Skip to main content
Log in

Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-plastic Problems Using Surface Measurements of Deformation Fields

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the identification of elasto-plastic constitutive parameters from deformation fields measured over the surface of thin flat specimens with the grid method. The approach for recovering the constitutive parameters is the virtual fields method. A dedicated algorithm is used for deriving the distribution of the 2D stress components from the measured deformation fields. A state of plane stress is assumed. Guesses of the constitutive parameters are input in the algorithm and updated until the stresses satisfy the principle of virtual work in the least squares sense. The advantage of this approach is that it can handle very heterogeneous plastic flows and it is much faster than classical finite element model updating approaches. An experimental application is provided to demonstrate it. Six mild steel double-notched specimens have been tested in a configuration combining tension and in-plane bending. The identified parameters are in good agreement with their reference counterparts. Stress fields are eventually reconstructed across the specimen all along the test for analyzing the evolution of the plastic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Laws V (1981) Derivation of the tensile stress-strain curve from bending data. J Mater Sci 16:1299–1304.

    Article  Google Scholar 

  2. Mayville RA, Finnie I (1982) Uniaxial stress-strain curves from a bending test. Exp Mech 22:197–201.

    Article  Google Scholar 

  3. Brunet M, Morestin F, Godereaux S (2001) Nonlinear kinematic hardening identification for anisotropic sheet metals with bending-unbending tests. J Eng Mater Technol 123:378–383

    Article  Google Scholar 

  4. Zhao KM (2004) Inverse estimation of material properties for sheet metals. Commun Numer Methods Eng 20:105–118

    Article  MATH  Google Scholar 

  5. Mahnken R, Stein E (1994) The identification of parameters for visco-plastic models via finite-elements methods and gradient methods. Model Simulation Mater Sci Eng 2:597–616

    Article  Google Scholar 

  6. Mahnken R, Stein E (1996) A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng 136:225–258

    Article  MATH  Google Scholar 

  7. Meuwissen MHH (1998) An inverse method for the mechanical characterisation of metals. PhD thesis, Eindhoven Technical University.

  8. Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Technol 75:204–211.

    Article  Google Scholar 

  9. Okada H, Fukui Y, Kumazawa N (1999) An inverse analysis determining the elastic-plastic stress-strain relationship using nonlinear sensitivities. Comput Model Simulation Eng 4(3):176–185.

    Google Scholar 

  10. Hoc T, Crépin J, Gélébart L, Zaoui A (2003) A procedure for identifying the plastic behaviour of single crystals from the local response of polycrystals. Acta Materialia 51:5477–5488.

    Article  Google Scholar 

  11. Kajberg J, Lindkvist G (2004) Characterization of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41:3439–3459.

    Article  MATH  Google Scholar 

  12. Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2007) Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix. Int J Solids Struct 44(13):4329–4341.

    Article  MATH  Google Scholar 

  13. Geng L, Shen Y, Wagoner RH (2002) Anisotropic hardening equations derived from reverse-bend testing. Int J Plasticity 18(5-6):743–767.

    Article  MATH  Google Scholar 

  14. Grédiac M, Pierron F (2006) Applying the virtual field method to the identification of elasto-plastic constitutive parameters. Int J Plasticity 22(4):602–627.

    Article  MATH  Google Scholar 

  15. Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extractiong constitutive parameters from full-field measurements: a review. Strain 42:233–253.

    Article  Google Scholar 

  16. Pannier Y, Avril S, Rotinat R, Pierron R (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 46(6):735–755.

    Article  Google Scholar 

  17. Sutton MA, Deng X, Liu J, Yang L (1996) Determination of elastic–plastic stresses and strains from measured surface strain data. Exp Mech 36(2):99–112.

    Article  Google Scholar 

  18. Lemaître J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  19. Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 1–Principle and definition. Int J Solids Struct 39(10):2691–2705.

    Article  MATH  Google Scholar 

  20. Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 2–Application to in-plane properties. Int J Solids Struct 39(10):2707–2730.

    Article  MATH  Google Scholar 

  21. Chapelle D, Darrieulat M (2003) The occurence of shear banding in a millimeter scale (123)[634] grain of an al-4.5% Mg alloy during plane strain compression. Mater Sci Eng A 347(1-2):32–41.

    Article  Google Scholar 

  22. Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44(14-15):4978–5002.

    Article  Google Scholar 

  23. Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput Mech 34(6):439–452.

    Article  MATH  Google Scholar 

  24. Feng Z, Rowlands RE (1991) Smoothing finite-element and experimental hybrid technique for stress analyzing composites. Computer Struct 6:631–639.

    Article  Google Scholar 

  25. Piro J-L, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Experimental Techniques 28(4):23–26.

    Article  Google Scholar 

  26. Surrel Y (1996) Design of algorithms for phase measurements by the use of phase-stepping. Appl Optic 35(1):51–60.

    Article  Google Scholar 

  27. Avril S, Pierron F, Yan J, Sutton M (2007) Identification of strain-rate sensitivity with the virtual fields method. In: Gdoutos E (ed) Proceedings of ICEM13, Alexandoupolis, Greece.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Avril.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avril, S., Pierron, F., Pannier, Y. et al. Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-plastic Problems Using Surface Measurements of Deformation Fields. Exp Mech 48, 403–419 (2008). https://doi.org/10.1007/s11340-007-9084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9084-2

Keywords

Navigation