Skip to main content
Log in

Tailoring Beam Mechanics Towards Enhancing Detection of Hazardous Biological Species

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Microcantilever based sensors have been widely employed for measuring or detecting various hazardous chemical agents and biological agents. Although they have been successful in detecting agents of interest, researchers desire to improve their performance by enhancing their mass sensitivity towards developing “detect to warn” detection capabilities. Moreover, there has been little work aimed at tailoring beam mechanics as a means to enhance mass sensitivity. In this paper, a numerical study is performed to assess the influence of microcantilever geometry on mass sensitivity in order to improve these devices for better detection of hazardous biological agents in liquid environments. Modal analysis was performed on microcantilevers of different geometries and shapes using ANSYS software and compared to the basic rectangular shaped microcantilever structures employed by most researchers. These structures all possessed a 50 μm length, 0.5 μm thickness and 25 μm width where the cantilever is clamped to the substrate, and were analyzed for their basic resonance frequency as well as the frequency shift for the attachment of a 0.285 pg of mass attached on their surfaces. These numerical results indicated that two parameters dominate their behavior, (1) the effective mass of the cantilever at the free end and (2) the clamping width at the fixed end. The ideal geometry was a triangular shape, which minimized effective mass and maximized clamping width, resulting in an order of magnitude increase in mass sensitivity (1,775 Hz/pg) over rectangular shaped cantilevers (172 Hz/pg) of identical length and clamping width. The most practical geometry was triangular shaped cantilever with a square pad at the free end for capturing the agent of interest. This geometry resulted in a mass sensitivity of 628 Hz/pg or nearly a 4-fold increase in performance over their rectangular counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cammann K, Hinkers H, Knoll M (1994) Microstructures and microsystems in instrumental analysis. Analusis 22:M19–M21.

    Google Scholar 

  2. Effenhauser CS, Manz A (1994) Miniaturizing a whole analytical laboratory down to chip size. Am Lab 26:15.

    Google Scholar 

  3. Popp M, Hoffmann J (1993) Technologies for sustained development—a new task for big science. 18:180–184.

  4. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems—a novel concept for chemical sensing. 1:244–248.

  5. Roblin P, Barrow DA (2000) Microsystems technology for remote monitoring and control in sustainable agricultural practices. J Environ Monit 2:385–392.

    Article  Google Scholar 

  6. Oden PI, Wachter EA, Thundat T, Warmack RJ (1996) Optical and infrared detection using microcantilevers. Proc SPIE Int Soc Opt Eng 2744:345–354.

    Google Scholar 

  7. Kiesewetter L, Zhang JM, Houdeau D, Steckenborn A (1992) Determination of young moduli of micromechanical thin-films using the resonance method. Sens Actuators, A, Phys 35:153–159.

    Article  Google Scholar 

  8. Bouwstra S, Legtenberg R, Tilmans HAC, Elwenspoek M (1990) Resonating microbridge mass-flow sensor. Sens Actuators, A, Phys 21:332–335.

    Article  Google Scholar 

  9. Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64:2894–2896.

    Article  Google Scholar 

  10. Chen GY, Warmack RJ, Thundat T, Allison DP, Huang A (1994) Resonance response of scanning force microscopy cantilevers. Rev Sci Instrum 65:2532–2537.

    Article  Google Scholar 

  11. Allison DP, Thundat T, Jacobson KB, Bottomley LA, Warmack RJ (1993) Imaging entire genetically functional DNA-molecules with the scanning tunneling microscope. J Vac Sci Technol, A, Vac Surf Films 11:816–819.

    Article  Google Scholar 

  12. Datskos PG, Sauers I (1999) Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers. Sens Actuators, B, Chem 61:75–82.

    Article  Google Scholar 

  13. Oden PI, Datskos PG, Thundat T, Warmack RJ (1996) Uncooled thermal imaging using a piezoresistive microcantilever. Appl Phys Lett 69:3277–3279.

    Article  Google Scholar 

  14. Su Y, Evans AGR, Brunnschweiler A (1996) Micromachined silicon cantilever paddles with piezoresistive readout for flow sensing. J Micromechanics Microengineering 6:69–72.

    Article  Google Scholar 

  15. Lang HP, Baller MK, Berger R, Gerber C, Gimzewski JK, Battiston FM, Fornaro P, Ramseyer JP, Meyer E, Guntherodt HJ (1999) An artificial nose based on a micromechanical cantilever array. Anal Chim Acta 393:59–65.

    Article  Google Scholar 

  16. Alvarez M, Calle A, Tamayo J, Lechuga LM, Abad A, Montoya A (2003) Development of nanomechanical biosensors for detection of the pesticide DDT. Biosens Bioelectron 18:649–653.

    Article  Google Scholar 

  17. Baselt DR, Fruhberger B, Klaassen E, Cemalovic S, Britton CL Jr, Patel SV, Mlsna TE, McCorkle D, Warmack B (2003) Design and performance of a microcantilever-based hydrogen sensor. Sens Actuators, B 88:120–131.

    Article  Google Scholar 

  18. Gunter RL, Delinger WD, Porter TL, Stewart R, Reed J (2005). Hydration level monitoring using embedded piezoresistive microcantilever sensors. Med Eng Phys 27:215–220.

    Article  Google Scholar 

  19. Ji H-F, Thundat T (2002) In situ detection of calcium ions with chemically modified microcantilevers. Biosens Bioelectron 17:337–343.

    Article  Google Scholar 

  20. Pinnaduwage LA, Thundat T, Hawk JE, Hedden DL, Britt PF, Houser EJ, Stepnowski S, McGill RA, Bubb D (2004) Detection of 2,4-dinitrotoluene using microcantilever sensors. Sens Actuators, B 99:223–229.

    Article  Google Scholar 

  21. Porter TL, Eastman MP, Macomber C, Delinger WG, Zhine R (2003) An embedded polymer piezoresistive microcantilever sensor. Ultramicroscopy 97:365–369.

    Article  Google Scholar 

  22. Tamayo J, Humphris ADL, Malloy AM, Miles MJ (2001) Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86:167–173.

    Article  Google Scholar 

  23. Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G (2003) Self-excited piezoelectric microcantilever for gas detection. Microelectron Eng 69:37–46.

    Article  Google Scholar 

  24. Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004) Attogram detection using nanoelectromechanical oscillators. J Appl Physi 75:3694–3703.

    Article  Google Scholar 

  25. Rodolphe M, Jensenius H, Thaysen J, Christensen CB, Boisen A (2002) Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors. Ultramicroscopy 91:29–36.

    Article  Google Scholar 

  26. Baselt DR, Lee GU, Colton RJ (1996) Biosensor based on force microscope technology. J Vac Sci Technol, B 14:789–793.

    Article  Google Scholar 

  27. Raiteri R, Grattarola M, Butt H-J, Skladal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators, B 79:115–126.

    Article  Google Scholar 

  28. Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol, B 19:2825–2828.

    Article  Google Scholar 

  29. Gunter RL, Delinger WG, Manygoats K, Kooser A, Porter TL (2003) Viral detection using an embedded piezoresistive microcantilever sensor. Sens Actuators, A 107:219–224.

    Article  Google Scholar 

  30. Kooser A, Manygoats K, Eastman MP, Porter TL (2003) Investigation of the antigen antibody reaction between anti-bovine serum albumin (a-BSA) and bovine serum albumin (BSA) using piezoresistive microcantilever based sensors. Biosens Bioelectron 19:503–508.

    Article  Google Scholar 

  31. Yan X, Ji H-F, Lvov Y (2004) Modification of microcantilevers using layer-by-layer nanoassembly film for glucose measurement. Chem Phys Lett 396:34–37.

    Article  Google Scholar 

  32. Ilic B, Yang Y, Craighead HG (2004) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85:2604–2606.

    Article  Google Scholar 

  33. Alvarez M, Tamayo J (2005) Optical sequential readout of microcantilever arrays for biological detection. Sens Actuators, B 106:687–690.

    Article  Google Scholar 

  34. Ziegler C, Gopel W, Hammerle H, Hatt H, Jung G, Laxhuber L, Schmidt HL, Schutz S, Vogtle F, Zell A (1998) Bioelectronic noses—a status report—part II [Review]. Biosens Bioelectron 13:539–571.

    Article  Google Scholar 

  35. Vadgama P, Crump PW (1992) Biosensors: recent trends. Analyst 117:1657–1670.

    Article  Google Scholar 

  36. Petrenko VA, Smith GP (2000) Phages from landscape libraries as substitute antibodies. Protein Eng 13:589–592.

    Article  Google Scholar 

  37. Petrenko VA, Smith GP, Mazooji MM, Quinn T (2002) Alpha-helically constrained phage display library. Protein Eng 15:943–950.

    Article  Google Scholar 

  38. Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53:253–262.

    Article  Google Scholar 

  39. Shih WY, Li XP, Gu HM, Shih WH, Aksay IA (2001) Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J Appl Physi 89:1497–1505.

    Article  Google Scholar 

  40. De Silva CW (1999) Vibration: fundamentals and practice. CRC, Boca Raton.

    Google Scholar 

  41. Ansys ANSYS Release 8.0 Documentation.

  42. Thomson WT (1969) Vibration theory & applications, 1st ed. Allen, London.

    Google Scholar 

  43. Blevins RD (1978) Formulas for natural frequency and mode shape. Van Nostrand, New York.

    Google Scholar 

  44. Yahiaoui R, Bosseboeuf A (2004) Cantilever microbeams: modeling of the dynamical behaviour and material characterization. Presented at 5th International conference on thermal and mechanical simulation and experiments in micro-electronics and micro-systems, Europe.

  45. Lochon F, Dufour I, Rebiere D (2005) An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions. Sens Actuators, B 108:979–985.

    Article  Google Scholar 

  46. Espinosa HD, Peng B, Prorok BC, Moldovan N, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2003) Fracture strength of ultrananocrystalline diamond thin films—identification of Weibull parameters. J Appl Physi 94:6076–6084.

    Article  Google Scholar 

  47. Espinosa HD, Prorok BC, Peng B, Kim KH, Moldovan N, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2003) Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices. Exp Mech 43:256–268.

    Article  Google Scholar 

  48. Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64.

    Article  Google Scholar 

  49. Pinnaduwage LA, Ji HF, Thundat T (2005) Moore’s law in homeland defense: an integrated sensor platform based on silicon microcantilevers. IEEE Sens J 5:774–785.

    Article  Google Scholar 

  50. Dareing DW, Tian F, Thundat T (2006) Effective mass and flow patterns of fluids surrounding microcantilevers. Ultramicroscopy 106:789–794.

    Article  Google Scholar 

  51. Baker SP, Nix WD (1994) Mechanical-properties of compositionally modulated Au–Ni Thin-Films—nanoindentation and microcantilever deflection experiments. J Mater Res 9:3131–3145.

    Google Scholar 

  52. Schweitz JA (1992) Mechanical characterization of thin-films by micromechanical techniques. MRS Bull 17:34–45.

    Google Scholar 

  53. Weihs TP, Hong S, Bravman JC, Nix WD (1988) Mechanical deflection of cantilever microbeams—a new technique for testing the mechanical-properties of thin-films. J Mater Res 3:931–942.

    Google Scholar 

  54. Weihs TP, Hong S, Bravman JC, Nix WD (1989) Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams. Mater Res Soc Symp Proc 402:87–92.

    Google Scholar 

  55. Kraft O, Volkert CA (2001) Mechanical testing of thin films and small structures. Adv Eng Mater 3:99–110.

    Article  Google Scholar 

  56. Florando JN, Nix WD (2005) A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates. J Mech Phys Solids 53:619–638.

    Article  MATH  Google Scholar 

  57. Kloek B (2004) Piezoresistive sensors. In: Gopel W, Hesse J, Zemel JN (eds) Sensors. VHC Verlagsgesellschaft, Weinheim, Germany, pp 145–172.

    Google Scholar 

  58. Harley JA (2002) Advances in piezoresistive probes for atomic force microscopy. Stanford University.

  59. Dao DV, Okada S, Dau VT, Toriyama T, Sugiyama S (2004) Development of a 3-DOF silicon piezoresistive micro accelerometer. IEEE, Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science, pp 271–276.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.C. Prorok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morshed, S., Prorok, B. Tailoring Beam Mechanics Towards Enhancing Detection of Hazardous Biological Species. Exp Mech 47, 405–415 (2007). https://doi.org/10.1007/s11340-006-9015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-9015-7

Keywords

Navigation