Skip to main content
Log in

As Good as GOLD: Gram–Schmidt Orthogonalization by Another Name

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Generalized orthogonal linear derivative (GOLD) estimates were proposed to correct a problem of correlated estimation errors in generalized local linear approximation (GLLA). This paper shows that GOLD estimates are related to GLLA estimates by the Gram–Schmidt orthogonalization process. Analytical work suggests that GLLA estimates are derivatives of an approximating polynomial and GOLD estimates are linear combinations of these derivatives. A series of simulation studies then further investigates and tests the analytical properties derived. The first study shows that when approximating or smoothing noisy data, GLLA outperforms GOLD, but when interpolating noisy data GOLD outperforms GLLA. The second study shows that when data are not noisy, GLLA always outperforms GOLD in terms of derivative estimation. Thus, when data can be smoothed or are not noisy, GLLA is preferred whereas when they cannot then GOLD is preferred. The last studies show situations where GOLD can produce biased estimates. In spite of these possible shortcomings of GOLD to produce accurate and unbiased estimates, GOLD may still provide adequate or improved model estimation because of its orthogonal error structure. However, GOLD should not be used purely for derivative estimation because the error covariance structure is irrelevant in this case. Future research should attempt to find orthogonal polynomial derivative estimators that produce accurate and unbiased derivatives with an orthogonal error structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Some confusion may have arisen from some of the terminology used for derivative estimation. Time-delays and embeddings sound exotic and potentially mysterious. The fact that the terms originate from the study of nonlinear and chaotic dynamics in physics (Abarbanel, 1996; Abarbanel, Brown, Sidorowich, & Tsimring, 1993) and the embedding theorems from Whitney (1936) in topological mathematics might aid in this misunderstanding. When conjoined with the practice of estimating derivatives which has roots in chemical spectroscopy Savitzky and Golay (1964), latent growth curves (McArdle & Epstein, 1987), and latent differential equations (Boker et al., 2004), it appears that some number of missteps are inevitable.

  2. Recall that because \(\varvec{Q}\) is orthogonal \(\varvec{Q}^\mathsf{T} = \varvec{Q}^{-1} \).

  3. Although the error is generated with standard deviation (SD) equal to \(0.25*(SD_\mathrm{true})\), the SD of the error relative to the fitted observations is not 0.25. It is closer to 0.5. This is because the observations are polynomials. Polynomials explode at the tails and this drives the SD up. But the fitting does not occur in the tails, only at the middle of an 11-point window. So the SD of the fitted observations is much smaller than the SD of the total observations. This means the signal-to-noise ratio (of variances) for the fitted observations is about \(mean(10*\mathrm{log}10(SNRv))\,=\,4.61\,dB\), not \(10*\mathrm{log}10(16)\,=\,12.04 dB\). In other words, for the data fitted here, the error does not account for 1/17 (approximately  6%) of the total variance. Rather, it accounts for about \(\mathrm{mean}(NR2)\,=\,28.8\) % of the total variance. To say it a third time, the raw signal-to-noise ratio is not 16, but rather is closer to 4.

  4. Note that in Table 1 the 3rd and 4th order derivative results are identical. This is necessarily true when using a fourth-order polynomial. In general, the highest two derivative orders possible for a polynomial will always be identical across GLLA and GOLD.

References

  • Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York: Springer.

    Book  Google Scholar 

  • Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., & Tsimring, L. S. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65(4), 1331–1392. doi:10.1103/RevModPhys.65.1331.

    Article  Google Scholar 

  • Bisconti, T. L., Bergeman, C. S., & Boker, S. M. (2004). Emotional well-being in recently bereaved widows: A dynamical systems approach. Journal of Gerontology, 59B, 158–167.

    Article  Google Scholar 

  • Bisconti, T. L., Bergeman, C. S., & Boker, S. M. (2006). Social support as a predictor of variability: An examination of the adjustment trajectories of recent widows. Psychology and Aging, 21, 590–599.

    Article  PubMed  Google Scholar 

  • Björck, Å. (1967). Solving linear least squares problems by Gram–Schmidt othogonalization. BIT, 7, 1–21.

    Article  Google Scholar 

  • Boker, S. M., Deboeck, P. R., Edler, C., & Keel, P. K. (2009). Generalized local linear approximation of derivatives from time series. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue. Boca Raton, FL: Taylor and Francis.

    Google Scholar 

  • Boker, S. M., & Graham, J. (1998). A dynamical systems analysis of adolescent substance abuse. Multivariate Behavioral Research, 33, 479–507. doi:10.1207/s15327906mbr3304_3.

    Article  PubMed  Google Scholar 

  • Boker, S. M., Leibenluft, E., Deboeck, P. R., Virk, G., & Postolache, T. T. (2008). Mood oscillations and coupling between mood and weather in patients with rapid cycling bipolar disorder. International Journal of Child Health and Human Development, 1(2), 181–203.

    PubMed  PubMed Central  Google Scholar 

  • Boker, S. M., Montpetit, M. A., Hunter, M. D., & Bergeman, C. S. (2010). Modeling resilience with diffrential equations. In P. C. M. Molenaar & K. Newell (Eds.), Individual pathways of change: Statistical models for analyzing learning and development (pp. 183–206). Washington, DC: American Psychological Association. doi:10.1037/12140-011.

    Chapter  Google Scholar 

  • Boker, S. M., Neale, M. C., & Rausch, J. (2004). Latent differential equation modeling with multivariate multi-occassion indicators. In K. van Montfort, H. Oud, & A. Satorra (Eds.), Recent developments on structural equation models: Theory and applications (pp. 151–174). Dordrecht: Kluwer Academic Publishers. doi:10.1007/978-1-4020-1958-6_9.

    Chapter  Google Scholar 

  • Boker, S. M., & Nesselroade, J. R. (2002). A method for modeling the intrinsic dynamics of intraindividual variability: Recovering the parameters of simulated oscillators in multi-wave panel data. Multivariate Behavioral Research, 37, 127–160.

    Article  PubMed  Google Scholar 

  • Casdagli, M., Eubank, S., Farmer, J. D., & Gibson, J. (1991). State space reconstruction in the presence of noise. Physica D, 51, 52–98. doi:10.1016/0167-2789(91)90222-U.

    Article  Google Scholar 

  • Chow, S., Ram, N., Boker, S. M., Fujita, F., & Clore, G. (2005). Emotion as a thermostat: Representing emotion regulation using a damped oscillator model. Emotion, 5, 208–225.

    Article  PubMed  Google Scholar 

  • Deboeck, P. R. (2010). Estimating dynamical systems: Derivative estimation hints from Sir Ronald A Fisher. Multivariate Behavioral Research, 45, 725–745. doi:10.1080/00273171.2010.498294.

    Article  PubMed  Google Scholar 

  • Estabrook, R. (2015). Evaluating measurement of dynamic constructs: Defining a measurement model of derivatives. Psychological Methods, 20(1), 117–141. doi:10.1037/a0034523.

    Article  PubMed  Google Scholar 

  • Fisher, R. A. (1925). The influence of rainfall on the yield of wheat at Rothamsted. Philosophical Transactions of the Royal Society of London, Series B, Containing Papers of a Biological Character, 213, 89–142.

    Article  Google Scholar 

  • Giona, M., Lentini, F., & Cimagalli, V. (1991). Functional reconstruction and local prediction of chaotic time series. Physical Review A, 44(6), 3496. doi:10.1103/PhysRevA.44.3496.

    Article  Google Scholar 

  • Hamaker, E. L., Nesselroade, J. R., & Molenaar, P. C. M. (2007). The integrated trait-state model. Journal of Research in Personality, 41, 295–315. doi:10.1016/j.jrp.2006.04.003.

    Article  Google Scholar 

  • Landau, R. H., Páez, M. J., & Bordeianu, C. C. (2007). Computational physics: Problem solving with computers (2nd ed.). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Lay, D. C. (2003). Linear algebra and its applications (3rd ed.). Boston, MA: Addison Wesley.

    Google Scholar 

  • Leon, S. J. (2006). Linear algebra with applications (7th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110–133.

    Article  PubMed  Google Scholar 

  • Molenaar, P. C. M., & Newell, K. M. (2003). Direct fit of theoretical model of phase transition in oscillatory finger motions. British Journal of Mathematical and Statistical Psychology, 56, 199–214. doi:10.1348/000711003770480002.

    Article  PubMed  Google Scholar 

  • Narula, S. C. (1979). Orthogonal polynomial regression. International Statistical Review, 47(1), 31–36.

    Article  Google Scholar 

  • Oud, J. H. L., & Folmer, H. (2011). Reply to Steele & Ferrer: Modeling oscillation, approximately or exactly? Multivariate Behavioral Research, 46(6), 985–993. doi:10.1080/00273171.2011.625306.

    Article  PubMed  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(9), 1627–1639.

    Article  Google Scholar 

  • Song, H., & Ferrer, E. (2009). State-space modeling of dynamic psychological processes via the Kalman smoother algorithm: Rationale, finite sample properties, and applications. Structural Equation Modeling, 16, 338–363. doi:10.1080/10705510902751432.

    Article  Google Scholar 

  • Steele, J. S., & Ferrer, E. (2011). Latent differential equation modeling of self-regulatory and coregulatory affective processes. Multivariate Behavioral Research, 46(6), 956–984. doi:10.1080/00273171.2011.625305.

    Article  PubMed  Google Scholar 

  • Trail, J. B., Collins, L. M., Rivera, D. E., Li, R., Piper, M. E., & Baker, T. B. (2014). unctional data analysis for dynamical system identification of behavioral processes. Psychological Methods, 19, 175–187. doi:10.1037/a0034035.

    Article  PubMed  Google Scholar 

  • Whitney, H. (1936). Differentiable manifolds. The Annals of Mathematics, 37(3), 645–680. Retrieved from http://www.jstor.org/stable/1968482.

  • Whittaker, E. T., & Robinson, G. (1924). The calculus of observations: A treatise on numerical mathematics (vol. 36) (No. 9). London.

  • Yang, M., & Chow, S. (2010). Using state-space model with regime switching to represent the dynamics of facial electromyography (EMG) data. Psychometrika, 75, 744–771. doi:10.1007/s11336-010-9176-2.

    Article  Google Scholar 

  • Zentall, S. R., Boker, S. M., & Braungart-Rieker, J. M. (2006, June). Mother-infant synchrony: A dynamical systems approach. In Proceedings of the Fifth International Conference on Development and Learning.

  • Zheng, Y., Wiebe, R. P., Cleveland, H. H., Molenaar, P. C., & Harris, K. S. (2013). An idiographic examination of day-to-day patterns of substance use craving, negative affect, and tobacco use among young adults in recovery. Multivariate Behavioral Research, 48(2), 241–266. doi:10.1080/00273171.2013.763012.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is grateful to Joseph L. Rodgers for helpful comments on earlier drafts of this article, and to the reviewers and associate editor for their invaluable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Hunter.

Appendix: Mathematical Background and a Lemma

Appendix: Mathematical Background and a Lemma

1.1 Background

Three items of sometimes unfamiliar mathematics will be vitally important: the dot product, vector projection, and the Gram–Schmidt orthogonalization process. For vectors \(\varvec{x} = \left( x_1 ,~ x_2 ,~ x_3 ,\ldots , x_n \right) ^\mathsf{T}\) and \(\varvec{y} = \left( y_1 ,~ y_2 ,~ y_3 , \ldots , y_n \right) ^\mathsf{T}\), the dot product, or scalar product, of the two vectors is written

$$\begin{aligned} \underbrace{ \varvec{x} \bullet \varvec{y} }_\text {Dot} = \underbrace{ \varvec{x}^\mathsf{T} \varvec{y} }_\text {Matrix} = \underbrace{ x_1 y_1 + x_2 y_2 + x_3 y_3 + \cdots + x_n y_n }_\text {Concrete Summation} = \underbrace{ \sum _{i=1}^n x_i y_i }_\text {Full Summation} \end{aligned}$$
(55)

The projection of \(\varvec{x}\) in the direction of \(\varvec{y}\) is defined as

$$\begin{aligned} \text {proj}_{\varvec{y}} (\varvec{x}) = \dfrac{\varvec{x} \bullet \varvec{y}}{\varvec{y} \bullet \varvec{y}} \varvec{y} \end{aligned}$$
(56)

It can be derived without much difficulty, but the idea of vector projection is most easily shown graphically as in Figure 3.

Fig. 3
figure 3

The projection of two vectors, \(x_1\) and \(x_2\), in the direction of a third vector, y.

In many situations, it can be useful to have an orthogonal set of vectors spanning a space of interest. The Gram–Schmidt orthogonalization process begins with an arbitrary set of basis vectors and produces an orthogonal set of basis vectors spanning the same space. Gram–Schmidt orthogonalization can be used to solve least squares problems (Björck 1967) and is often covered in introductory linear algebra course books (e.g., Lay, 2003; Leon, 2006).

If \(\varvec{u}_1, \varvec{u}_2, \varvec{u}_3, \ldots , \varvec{u}_m\) are the original basis vectors, then \(\varvec{u'}_1, \varvec{u'}_2, \varvec{u'}_3, \ldots , \varvec{u'}_m\) are the new orthogonal basis vectors defined by

$$\begin{aligned} \varvec{u'}_1&= \varvec{u}_1 \end{aligned}$$
(57)
$$\begin{aligned} \varvec{u'}_2&= \varvec{u}_2 - \text {proj}_{\varvec{u'}_1} (\varvec{u}_2) \end{aligned}$$
(58)
$$\begin{aligned} \varvec{u'}_3&= \varvec{u}_3 - \text {proj}_{\varvec{u'}_1} (\varvec{u}_3) - \text {proj}_{\varvec{u'}_2} (\varvec{u}_3) \end{aligned}$$
(59)
$$\begin{aligned} \vdots \nonumber \\ \varvec{u'}_m&= \varvec{u}_m - \sum _{i=1}^{m-1} \text {proj}_{\varvec{u'}_i} (\varvec{u}_m). \end{aligned}$$
(60)

So the \(k^{th}\) new basis vector,

$$\begin{aligned} \varvec{u'}_k = \varvec{u}_k - \sum _{i=1}^{k-1} \text {proj}_{\varvec{u'}_i} (\varvec{u}_k) = \varvec{u}_k - \sum _{i=1}^{k-1} \dfrac{ \varvec{u}_k \bullet \varvec{u'}_i }{ \varvec{u'}_i \bullet \varvec{u'}_i} \varvec{u'}_i. \end{aligned}$$
(61)

Figure 4 illustrates a two-dimensional example of the Gram–Schmidt orthogonalization process. When beginning with a nonorthogonal set of basis vectors \(\{\varvec{u_1}, \varvec{u_2}\}\) that spans the two-dimensional space, then the Gram–Schmidt procedure produces a new set of orthogonal basis vectors \(\{\varvec{u'_1}, \varvec{u'_2}\}\) that spans the same space.

Fig. 4
figure 4

The construction of a set of new orthogonal basis vectors, \(u_1'\) and \(u_2'\), from an original set of basis vectors, \(u_1\) and \(u_2\), by Gram–Schmidt Orthogonalization.

1.2 Lemma Regarding Orthogonal Vectors and Projections

Let \(\varvec{u}_1, \ldots , \varvec{u}_m\) be any full rank set of m vectors, and let \(\varvec{u'}_1, \ldots , \varvec{u'}_m\) be the set of orthogonalized vectors produced by applying the Gram–Schmidt orthogonalization process to \(\varvec{u}_1, \ldots , \varvec{u}_m\). We want to show that for any \(k \in \{ 1, 2, 3, \ldots , m \}, ~~ \varvec{u'}_k \bullet \varvec{u'}_k = \varvec{u'}_k \bullet \varvec{u}_k\). By substitution based on the Gram–Schmidt definition and that of vector projection

$$\begin{aligned} \varvec{u'}_k \bullet \varvec{u'}_k = \varvec{u'}_k \bullet \left( \varvec{u}_k - \sum _{i=1}^{k-1} \text {proj}_{\varvec{u'}_i} (\varvec{u}_k) \right) = \varvec{u'}_k \bullet \left( \varvec{u}_k - \sum _{i=1}^{k-1} \dfrac{ \varvec{u}_k \bullet \varvec{u'}_i }{ \varvec{u'}_i \bullet \varvec{u'}_i} \varvec{u'}_i \right) . \end{aligned}$$
(62)

And because the dot product follows a distributive law

$$\begin{aligned} = \varvec{u'}_k \bullet \varvec{u}_k - \varvec{u'}_k \bullet \left( \sum _{i=1}^{k-1} \dfrac{ \varvec{u}_k \bullet \varvec{u'}_i }{ \varvec{u'}_i \bullet \varvec{u'}_i} \varvec{u'}_i \right) . \end{aligned}$$
(63)

Again, applying the distributive law and expanding the summation,

$$\begin{aligned} = \varvec{u'}_k \bullet \varvec{u}_k - \underbrace{\varvec{u'}_k \bullet \left( \dfrac{ \varvec{u}_k \bullet \varvec{u'}_1 }{ \varvec{u'}_1 \bullet \varvec{u'}_1} \varvec{u'}_1 \right) - \varvec{u'}_k \bullet \left( \dfrac{ \varvec{u}_k \bullet \varvec{u'}_2 }{ \varvec{u'}_2 \bullet \varvec{u'}_2} \varvec{u'}_2 \right) - \ldots - \varvec{u'}_k \bullet \left( \dfrac{ \varvec{u}_k \bullet \varvec{u'}_{k-1} }{ \varvec{u'}_{k-1} \bullet \varvec{u'}_{k-1}} \varvec{u'}_{k-1} \right) }_{\text {Want to show this is } 0}. \end{aligned}$$
(64)

Now rearranging terms

$$\begin{aligned}&= \varvec{u'}_k \bullet \varvec{u}_k - \left( \dfrac{ \varvec{u}_k \bullet \varvec{u'}_1 }{ \varvec{u'}_1 \bullet \varvec{u'}_1} \right) \underbrace{ \left( \varvec{u'}_k \bullet \varvec{u'}_1 \right) }_{=0} - \left( \dfrac{ \varvec{u}_k \bullet \varvec{u'}_2 }{ \varvec{u'}_2 \bullet \varvec{u'}_2} \right) \underbrace{ \left( \varvec{u'}_k \bullet \varvec{u'}_2 \right) }_{=0}\nonumber \\&\quad - \ldots - \left( \dfrac{ \varvec{u}_k \bullet \varvec{u'}_{k-1} }{ \varvec{u'}_{k-1} \bullet \varvec{u'}_{k-1}} \right) \underbrace{ \left( \varvec{u'}_k \bullet \varvec{u'}_{k-1} \right) }_{=0}. \end{aligned}$$
(65)

The underbraced terms are all zero because we know that the new Gram–Schmidt basis vectors, \(\varvec{u'}_i\), are orthogonal. So finally,

$$\begin{aligned} = \varvec{u'}_k \bullet \varvec{u}_k. \end{aligned}$$
(66)

We have thus shown that \(\varvec{u'}_k \bullet \varvec{u'}_k = \varvec{u'}_k \bullet \varvec{u}_k\), and the proof is complete.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, M.D. As Good as GOLD: Gram–Schmidt Orthogonalization by Another Name. Psychometrika 81, 969–991 (2016). https://doi.org/10.1007/s11336-016-9511-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-016-9511-3

Keywords

Navigation