Skip to main content

Advertisement

Log in

The Reduced RUM as a Logit Model: Parameterization and Constraints

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Cognitive diagnosis models (CDMs) for educational assessment are constrained latent class models. Examinees are assigned to classes of intellectual proficiency defined in terms of cognitive skills called attributes, which an examinee may or may not have mastered. The Reduced Reparameterized Unified Model (Reduced RUM) has received considerable attention among psychometricians. Markov Chain Monte Carlo (MCMC) or Expectation Maximization (EM) are typically used for estimating the Reduced RUM. Commercial implementations of the EM algorithm are available in the latent class analysis (LCA) routines of Latent GOLD and Mplus, for example. Fitting the Reduced RUM with an LCA routine requires that it be reparameterized as a logit model, with constraints imposed on the parameters. For models involving two attributes, these have been worked out. However, for models involving more than two attributes, the parameterization and the constraints are nontrivial and currently unknown. In this article, the general parameterization of the Reduced RUM as a logit model involving any number of attributes and the associated parameter constraints are derived. As a practical illustration, the LCA routine in Mplus is used for fitting the Reduced RUM to two synthetic data sets and to a real-world data set; for comparison, the results obtained by using the MCMC implementation in OpenBUGS are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolt, D., Chen, H., DiBello, L., Hartz, S., Henson, R., Roussos, L., et al. (2008). The Arpeggio Suite: Software for cognitive skills diagnostic assessment (Computer software). St. Paul, MN: Assessment Systems.

    Google Scholar 

  • Buck, G., & Tatsuoka, K. K. (1998). Application of the rule-space procedure to language testing: Examining attributes of a free response listening test. Language Testing, 15, 119–157.

    Google Scholar 

  • Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633–665.

    Article  Google Scholar 

  • de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115–130.

    Article  Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.

    Article  Google Scholar 

  • DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Volume 26. Psychometrics (pp. 979–1030). Amsterdam: Elsevier.

    Google Scholar 

  • Feng, Y., Habing, B. T., & Huebner, A. (2014). Parameter estimation of the Reduced RUM using the EM algorithm. Applied Psychological Measurement, 38, 137–150.

    Article  Google Scholar 

  • Haberman, S. J., & von Davier, M. (2007). Some notes on models for cognitively based skill diagnosis. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Volume 26. Psychometrics (pp. 1031–1038). Amsterdam: Elsevier.

    Google Scholar 

  • Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: Blending theory with practicality (Doctoral dissertation). Available from ProQuest Dissertations and Theses Database (UMI No. 3044108).

  • Hartz, S. M., Roussos, L. A., Henson, R. A., & Templin, J. L. (2005). The fusion model for skill diagnosis: Blending theory with practicality, Unpublished manuscript.

  • Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29, 262–277.

    Article  Google Scholar 

  • Henson, R., Roussos, L. A., Douglas, J., & He, X. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32, 275–288.

    Article  Google Scholar 

  • Henson, R., Templin, J. L., & Douglas, J. (2007). Using efficient model based sum-scores for conducting skills diagnoses. Journal of Educational Measurement, 44, 361–376.

    Article  Google Scholar 

  • Henson, R. A., & Templin, J. (2007, April). Large-scale language assessment using cognitive diagnosis models. Paper presented at the Annual Meeting of the National Council on Measurement in Education, Chicago, IL.

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.

    Article  Google Scholar 

  • Kim, Y.-H. (2011). Diagnosing EAP writing ability using the Reduced Reparameterized Unified model. Language Testing, 28, 509–541.

    Article  Google Scholar 

  • Leighton, J., & Gierl, M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Liu, Y., Douglas, J. A., & Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Measurement, 33, 579–598.

    Article  Google Scholar 

  • Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique, and future directions. Statistics in Medicine, 28, 3049–3067.

    Article  PubMed  Google Scholar 

  • Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 33, 379–416.

    Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998–2011). Mplus user’s guide (Version 6.1) (Computer software and manual). Los Angeles: Muthén & Muthén.

  • Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement. Theory, methods, and applications. New York: Guilford.

    Google Scholar 

  • Tatsuoka, K. K. (1983). Rule-space: An approach for dealing with misconceptions based on item-response theory. Journal of Educational Measurement, 20, 345–354.

    Article  Google Scholar 

  • Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconception in the pattern classification approach. Journal of Educational Statistics, 12, 55–73.

    Google Scholar 

  • Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79, 317–339.

    Article  PubMed  Google Scholar 

  • Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32, 37–50.

    Article  Google Scholar 

  • Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.

    Article  PubMed  Google Scholar 

  • Templin, J. L., Henson, R. A., Templin, S. E., & Roussos, L. A. (2008). Robustness of hierarchical modeling of skill association in cognitive diagnosis models. Applied Psychological Measurement, 32, 559–574.

    Article  Google Scholar 

  • Vermunt, J. K., & Magidson, J. (2000). Latent GOLD’s users’s guide. Boston: Statistical Innovations Inc.

    Google Scholar 

  • von Davier, M. (2005, September). A general diagnostic model applied to language testing data (Research report No. RR-05-16). Princeton, NJ: Educational Testing Service.

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–301.

    Article  Google Scholar 

  • von Davier, M. (2011, September). Equivalency of the DINA model and a constrained general diagnostic model (Research report No. RR-11-37). Princeton, NJ: Educational Testing Service.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yi Chiu.

Appendices

Appendix 1: Mplus Syntax: The Synthetic Data Set Involving \(K=3\) Attributes

1.1 Model Definition and Constraints

The notation follows Rupp et al. (2010) that may serve as general reference on writing Mplus code for fitting CDMs. The preamble of the Mplus command file specifies the number of \(J=30\) test items. In the subsequent MODEL declaration, for each of the 8 proficiency classes separately, all \(J=30\) test items must be specified (for details, consult Templin & Hoffman’s, 2013, comprehensive tutorial). The MODEL declaration must also contain the syntax for computing the means of the proficiency classes that are needed later on for modeling the higher-order structure among the attributes (more on this below):

figure a

In the MODEL CONSTRAINT section of the syntax, the constraints on the model parameters must be defined for each item individually. An item parameter is denoted by “Lj_ab” in the Mplus command language, where “j” is the item number; “a” specifies whether the parameter refers to a main effect \((\mathtt{a}=1)\) or an interaction term of order \(\mathtt{a}> 1\); and “b” indicates the attribute(s) involved. As an example, consider item 1 that requires the mastery of only the first attribute: \(\mathbf {q}_1 = (100)^T\). The IRF of item 1 is

$$\begin{aligned} P(Y_1 = 1 \mid \varvec{\alpha }) = \frac{ \mathrm{e}^{ \beta _{10} + \beta _{11} \alpha _1 } }{ 1 + \mathrm{e}^{ \beta _{10} + \beta _{11} \alpha _1 } } \end{aligned}$$

The intercept parameter, \(\beta _{10}\), is written as L1_0; the coefficient of the main effect, \(\beta _{11}\), is written as L1_11. Recall that \(\beta _{10}\) is unconstrained; hence, the only parameter constraint is \(\beta _{11} > 0\), which is written in the Mplus command language as \(\mathtt{L1\_11>0}\). As a more complex example, consider item 7 that requires the mastery of all \(K=3\) attributes; thus, \(\mathbf {q}_7 = (111)^T\). The IRF of item 7 is

$$\begin{aligned} P(Y_7=1 \mid \varvec{\alpha })&= \frac{ \mathrm{e}^{ \beta _{70} + \beta _{71}\alpha _1 + \beta _{72}\alpha _2 + \beta _{73}\alpha _3 + \beta _{712}\alpha _1\alpha _2 + \beta _{713}\alpha _1\alpha _3 + \beta _{723}\alpha _2\alpha _3 + \beta _{7123}\alpha _1\alpha _2\alpha _3 } }{ 1 + \mathrm{e}^{ \beta _{70} + \beta _{71}\alpha _1 + \beta _{72}\alpha _2 + \beta _{73}\alpha _3 + \beta _{712}\alpha _1\alpha _2 + \beta _{713}\alpha _1\alpha _3 + \beta _{723}\alpha _2\alpha _3 + \beta _{7123}\alpha _1\alpha _2\alpha _3 } }\\ \text{ subject } \text{ to: }&(1)\,\, 0 < \beta _{7k} \qquad k=1,2 \\&(2)\,\, 0 < \beta _{73} < \ln \left( \big (1 + \mathrm{e}^{ \beta _{70} + \beta _{71} } \big )\big (1 + \mathrm{e}^{ \beta _{70} + \beta _{72} }\big )\right) \\&\quad - \ln \left( \big (1 + \mathrm{e}^{ \beta _{70} } \big )^2 \mathrm{e}^{ \beta _{71} + \beta _{72} } - \big (1 + \mathrm{e}^{ \beta _{70} + \beta _{71} } \big ) \big (1 + \mathrm{e}^{ \beta _{70} + \beta _{72} } \big ) \right) - \beta _{70} \end{aligned}$$

where

$$\begin{aligned} \beta _{712}= & {} \ln \left( \frac{1 + \mathrm{e}^{ \beta _{70}}}{\big (1 + \mathrm{e}^{ \beta _{70} + \beta _{71}}\big )\big (1 + \mathrm{e}^{ \beta _{70} + \beta _{72}}\big ) - \big (1 + \mathrm{e}^{ \beta _{70}}\big ) \mathrm{e}^{ \beta _{70} + \beta _{71} + \beta _{72}}} \right) \\ \beta _{713}= & {} \ln \left( \frac{1 + \mathrm{e}^{ \beta _{70}}}{\big (1 + \mathrm{e}^{ \beta _{70} + \beta _{71}}\big )\big (1 + \mathrm{e}^{ \beta _{70} + \beta _{73}}\big ) - \big (1 + \mathrm{e}^{ \beta _{70}}\big ) \mathrm{e}^{ \beta _{70} + \beta _{71} + \beta _{73}}} \right) \\ \beta _{723}= & {} \ln \left( \frac{1 + \mathrm{e}^{ \beta _{70}}}{\big (1 + \mathrm{e}^{ \beta _{70} + \beta _{72}}\big )\big (1 + \mathrm{e}^{ \beta _{70} + \beta _{73}}\big ) - \big (1 + \mathrm{e}^{ \beta _{70}}\big ) \mathrm{e}^{ \beta _{70} + \beta _{72} + \beta _{73}}} \right) \\ \beta _{7123}= & {} \ln \left( \frac{ (1 + \mathrm{e}^{ \beta _{70} } )^2 }{ \big ( 1 + \mathrm{e}^{ \beta _{70} + \beta _{71}}\big ) \big (1 + \mathrm{e}^{ \beta _{70} + \beta _{72}}\big ) \big (1 + \mathrm{e}^{ \beta _{70} + \beta _{73} }\big ) -\big (1 + \mathrm{e}^{ \beta _{70} } \big )^2 \mathrm{e}^{ \beta _{70} + \beta _{71} + \beta _{72} + \beta _{73}} } \right) \\&\quad - \big (\beta _{713} + \beta _{712} + \beta _{723}\big ) \end{aligned}$$

All model parameters in the IRF of item 7 are defined in the first line of the MODEL CONSTRAINT section, followed by the specification of the model parameters that characterize the different proficiency classes. Third, the constraints on the three main effects, \(\beta _{71}\) (L7_11 in Mplus syntax), \(\beta _{72}\) (L7_12), and \(\beta _{73}\) (L7_13), that guarantee monotonicity are defined. (In addition, note the complex syntax of Constraint 2 that defines the upper bound on the coefficient of the last main effect, \(\beta _{73}\) (L7_13).)   Finally, the equations of the interaction terms of item 7 must be implemented. (Recall that the parameters of all interaction terms are functions of the parameters of the constituting main effects.)

figure b

1.2 Converting the Parameter Estimates from the Logit to the Traditional Form of the Reduced RUM

The parameter estimates of the Reduced RUM in traditional form are retrieved from the EM-based parameter estimates obtained for the logit model. As an example of how to perform the parameter conversion, consider item 7 (see also p. 9):

$$\begin{aligned} \pi ^{*}_7= & {} \frac{ \mathrm{e}^{ \beta _{70} + \beta _{71} + \beta _{72} + \beta _{73} } (1 + \mathrm{e}^{ \beta _{70} })^2 }{ (1 + \mathrm{e}^{ \beta _{70} + \beta _{71} }) (1 + \mathrm{e}^{ \beta _{70} + \beta _{72} }) (1 + \mathrm{e}^{ \beta _{70} + \beta _{73} }) }\\ r^{*}_{71}= & {} \frac{ 1 + \mathrm{e}^{ \beta _{70} + \beta _{71} } }{ \mathrm{e}^{ \beta _{71} } (1 + \mathrm{e}^{ \beta _{70} }) }\\ r^{*}_{72}= & {} \frac{ 1 + \mathrm{e}^{ \beta _{70} + \beta _{72} } }{ \mathrm{e}^{ \beta _{72} } (1 + \mathrm{e}^{ \beta _{70} }) }\\ r^{*}_{73}= & {} \frac{ 1 + \mathrm{e}^{ \beta _{70} + \beta _{73} } }{ \mathrm{e}^{ \beta _{73} } (1 + \mathrm{e}^{ \beta _{70} }) } \end{aligned}$$

The conversion of the parameter estimates can be carried out directly in Mplus:

figure c

1.3 Modeling the Higher-Order Structure Among Attributes

As discussed in Rupp et al. (2010), several models can be used for the higher-order structure among attributes. In the simulation studies here, the saturated log-linear model is used. Following the notation in Rupp et al. (2010), the parameters are denoted as G_ab, where “a” indicates if the parameter refers to a main effect \((\mathtt{a}=1)\) or an interaction term of order \(\mathtt{a}> 1\); “b” specifies the attribute(s) involved.

figure d

Appendix 2: Mplus Syntax: The Synthetic Data Set Involving \(K=4\) Attributes

The most complex test item 15 requiring the mastery of \(K=4\) attributes is used as an example here for the implementation of the parameters of the logistic function and their associated constraints. First, the constraints on the main effect parameters, \(\beta _{151}\), \(\beta _{152}\), \(\beta _{153}\), and \(\beta _{154}\), that guarantee monotonicity must be defined. The least upper bound on the parameter associated with the last main effect, \(\beta _{154}\) (L15_14 in Mplus syntax), is derived from Equation 14 as

$$\begin{aligned} \beta _{154}< & {} \sum ^{4-1}_{k=1}\ln (1 + \mathrm{e}^{ \beta _{150} + \beta _{15k}}) - \ln \left( \prod ^{4-1}_{k=1} (\mathrm{e}^{\beta _{15k}} + \mathrm{e}^{ \beta _{150} + \beta _{15k}}) -\prod ^{4-1}_{k=1} \big (1 + \mathrm{e}^{\beta _{150} + \beta _{jk}}\big )\right) -\beta _{150} \\= & {} \ln \big (1 + \mathrm{e}^{ \beta _{150} + \beta _{151}}\big )+\ln \big (1 + \mathrm{e}^{ \beta _{150} + \beta _{152}}\big )+\ln \big (1 + \mathrm{e}^{ \beta _{150} + \beta _{153}}\big )\\&-\ln \left( \big (1\!+\!\beta _{150}\big )^3\mathrm{e}^{\beta _{151}+\beta _{152}+\beta _{153}}-\big (1 \!+\! \mathrm{e}^{\beta _{150} \!+\! \beta _{151}}\big )\big (1 \!+\! \mathrm{e}^{\beta _{150} \!+\! \beta _{152}}\big )\big (1 \!+\! \mathrm{e}^{\beta _{150} + \beta _{153}}\big )\right) -\beta _{150} \end{aligned}$$

As an example of a rather complex model parameter, the coefficient of the four-way interaction term of item 15, \(\beta _{151234}\), is given (see Equation 11):

$$\begin{aligned} \beta _{151234}= & {} \ln \left( \frac{ (1 + \mathrm{e}^{\beta _{150}})^{4-1}}{\prod ^4_{k=1} (1 + \mathrm{e}^{\beta _{150} + \beta _{15k}}) - (1 + \mathrm{e}^{ \beta _{150}} )^{4-1} \mathrm{e}^{ \beta _{150} + \sum ^4_{k=1} \beta _{15k} } } \right) \\&-\left( \sum ^4_{k^{\prime }=k+1} \sum ^3_{k=1} \beta _{15kk^{\prime }} + \sum ^4_{k_3=k_2+1}\sum ^3_{k_2=k_1+1} \sum ^2_{k_1=1} \beta _{15 k_1k_2k_3}\right) \\= & {} \ln \left( \frac{(1 + \mathrm{e}^{\beta _{150}})^3}{(1 + \mathrm{e}^{\beta _{150} + \beta _{151}} )\cdots (1 + \mathrm{e}^{\beta _{150} + \beta _{154}} ) - (1 + \mathrm{e}^{ \beta _{150}})^3 \mathrm{e}^{ \beta _{150} + \beta _{151} + \beta _{152} + \beta _{153} + \beta _{154} } } \right) \\&- (\beta _{1512}\!+\! \beta _{1513} \!+\!\beta _{1514} \!+\!\beta _{1523} +\beta _{1524} \!+\!\beta _{1534}\!+\! \beta _{15123}+ \beta _{15124}+ \beta _{15134}+ \beta _{15234}) \end{aligned}$$

Here is the complete Mplus syntax for item 15:

figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, CY., Köhn, HF. The Reduced RUM as a Logit Model: Parameterization and Constraints. Psychometrika 81, 350–370 (2016). https://doi.org/10.1007/s11336-015-9460-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-015-9460-2

Keywords

Navigation