Skip to main content
Log in

Portfolio Decisions and Brain Reactions via the CEAD method

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Decision making can be a complex process requiring the integration of several attributes of choice options. Understanding the neural processes underlying (uncertain) investment decisions is an important topic in neuroeconomics. We analyzed functional magnetic resonance imaging (fMRI) data from an investment decision study for stimulus-related effects. We propose a new technique for identifying activated brain regions: cluster, estimation, activation, and decision method. Our analysis is focused on clusters of voxels rather than voxel units. Thus, we achieve a higher signal-to-noise ratio within the unit tested and a smaller number of hypothesis tests compared with the often used General Linear Model (GLM). We propose to first conduct the brain parcellation by applying spatially constrained spectral clustering. The information within each cluster can then be extracted by the flexible dynamic semiparametric factor model (DSFM) dimension reduction technique and finally be tested for differences in activation between conditions. This sequence of Cluster, Estimation, Activation, and Decision admits a model-free analysis of the local fMRI signal. Applying a GLM on the DSFM-based time series resulted in a significant correlation between the risk of choice options and changes in fMRI signal in the anterior insula and dorsomedial prefrontal cortex. Additionally, individual differences in decision-related reactions within the DSFM time series predicted individual differences in risk attitudes as modeled with the framework of the mean-variance model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. NeuroImage, 20(2), 1052–1063. doi:10.1016/S1053-8119(03)00435-X.

    Article  PubMed  Google Scholar 

  • Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23(2), 137–152. doi:10.1109/TMI.2003.822821.

    Article  PubMed  Google Scholar 

  • Beckmann, C. F., & Smith, S. M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25(1), 294–311. doi:10.1016/j.neuroimage.2004.10.043.

    Article  PubMed  Google Scholar 

  • Bernoulli, D. (1738). Specimen Theoriae Novae de Mensura Sortis. Papers of the Imperial Academy of Sciences in Petersburg, 5, 172–192.

  • Brown, D. A., Lazar, N. A., Datta, G. S., Jang, W., & McDowell, J. E. (2014). Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging. NeuroImage, 84(1), 97–112. doi:10.1016/j.neuroimage.2013.08.024.

    Article  PubMed  Google Scholar 

  • Camerer, C. F. (2007). Neuroeconomics: Using neuroscience to make economic predictions. The Economic Journal, 117(519), C26–C42. doi:10.1111/j.1468-0297.2007.02033.x.

    Article  Google Scholar 

  • Camerer, C. F. (2013). Goals, methods, and progress in neuroeconomics. Annual Review of Economics, 5(1), 425–455. doi:10.1146/annurev-economics-082012-123040.

    Article  Google Scholar 

  • Caraco, T. (1981). Energy budgets, risk and foraging preferences in dark-eyed juncos (Junco hyemalis). Behavioral Ecology and Sociobiology, 8(3), 213–217. doi:10.1007/BF00299833.

    Article  Google Scholar 

  • Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., & Mayberg, H. S. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping, 33(8), 1914–1928. doi:10.1002/hbm.21333.

    Article  PubMed  Google Scholar 

  • Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. R., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2(4), 189–210. doi:10.1002/hbm.460020402.

    Article  Google Scholar 

  • Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U., McIntosh, A. R., & Grady, C. L. (2013). Moment-to-moment brain signal variability: A next frontier in human brain mapping. Neuroscience and Biobehavioral Reviews, 37(4), 610–624. doi:10.1016/j.neubiorev.2013.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glimcher, P. W., & Fehr, E. (2013). Neuroeconomics: Decision making and the brain (2nd ed.). London: Academic Press. ISBN: 9780124160088.

    Google Scholar 

  • Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467–479. doi:10.1038/nrn2374.

    Article  PubMed  Google Scholar 

  • Heller, R., Stanley, D., Yekutieli, D., Rubin, N., & Benjamini, Y. (2006). Cluster-based analysis of FMRI data. NeuroImage, 33(2), 599–608. doi:10.1016/j.neuroimage.2006.04.233.

    Article  PubMed  Google Scholar 

  • Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Reviews Neuroscience, 10, 1625–1633.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decisison under risk. Econometrica, 47(2), 263–292. doi:10.2307/1914185.

    Article  Google Scholar 

  • Kamvar, S. D., Klein, D., & Manning, C. D. (2003). Spectral Learning. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI’03 (pp. 561–566). San Francisco: Morgan Kaufmann Publishers Inc. ISBN: 9780127056616.

  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. doi:10.1038/nature06976.

    Article  PubMed  Google Scholar 

  • Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416. doi:10.1007/s11222-007-9033-z.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91. doi:10.1111/j.1540-6261.1952.tb01525.x.

    Google Scholar 

  • Mohr, P., Biele, G., & Heekeren, H. (2010). Neural processing of risk. The Journal of Neuroscience, 30(19), 6613–6619. doi:10.1523/JNEUROSCI.0003-10.2010.

    Article  PubMed  Google Scholar 

  • Mohr, P. N. C., Biele, G., Krugel, L. K., Li, S.-C., & Heekeren, H. R. (2010). Neural foundations of risk-return trade-off in investment decisions. NeuroImage, 49(3), 2556–2563. doi:10.1016/j.neuroimage.2009.10.060.

    Article  PubMed  Google Scholar 

  • Mohr, P. N. C., & Nagel, I. E. (2010). Variability in brain activity as an individual difference measure in neuroscience? The Journal of Neuroscience, 30(23), 7755–7757. doi:10.1523/JNEUROSCI.1560-10.2010.

    Article  PubMed  Google Scholar 

  • Park, B. U., Mammen, E., Härdle, W. K., & Borak, S. (2009). Time series modelling with semiparametric factor dynamics. Journal of the American Statistical Association, 104(485), 284–298. doi:10.1198/jasa.2009.0105.

    Article  Google Scholar 

  • Ruff, C. C., & Huettel, S. A. (2013). Chapter Experimental methods in cognitive neuroscience. Neuroeconomics: Decision making and the brain (2nd ed.). London: Academic Press. ISBN: 9780124160088.

  • Shen, X., Papademetris, X., & Constable, R. T. (2010). Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data. NeuroImage, 50(3), 1027–1035. doi:10.1016/j.neuroimage.2009.12.119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. doi:10.1109/34.868688.

    Article  Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. doi:10.1073/pnas.0905267106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-D proportional system: An approach to cerebral imaging (Thieme Classics). Stuttgart: Thieme.

    Google Scholar 

  • van Bömmel, A., Song, S., Majer, P., Mohr, P. N. C., Heekeren, H. R., & Härdle, W. K. (2013). Risk patterns and correlated brain activities. Multidimensional statistical analysis of fMRI data in economic decision making study. Psychometrika. doi:10.1007/s11336-013-9352-2.

  • van den Heuvel, M., & Mandl, R. (2008). Normalized cut group clustering of resting-state fMRI data. PLoS ONE, 3(4), e2001. doi:10.1371/journal.pone.0002001.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1953). Theory of games and economic behavior. Princeton: Princeton University Press.

    Google Scholar 

  • Weber, E. U., & Milliman, R. A. (1997). Perceived risk attitudes: Relating risk perception to risky choice. Management Science, 43(2), 123–144. doi:10.1287/mnsc.43.2.123.

    Article  Google Scholar 

  • Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., et al. (2002). A general statistical analysis for fMRI data. NeuroImage, 15(1), 1–15. doi:10.1006/nimg.2001.0933.

    Article  PubMed  Google Scholar 

  • Xu, Q., desJardins, M., & Wagstaff, K. (2005). Constrained spectral clustering under a local proximity structure assumption. In: Proceedings of the 18th International Florida Artificial Intelligence Research Society (FLAIRS) Conference (pp. 866–867). Palo Alto: AAAI Press. ISBN: 9781577352341.

Download references

Acknowledgments

The authors greatfully acknowledge financial support from the Deutsche Forschungsgemeinschaft through SFB 649 “Economic Risk” and IRTG 1792 “High Dimensional Non Stationary Time Series”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Majer.

Appendix

Appendix

See (Figures 1017 and Tables 4, 5).

1.1 Simulation Study

Fig. 10
figure 10

Stimulus time series derived as a convolution of double Gamma hemodynamic response function and uncorrelated portfolio stimulus \(\times 64\) plotted against time (each \(2\) s).

Fig. 11
figure 11

Simulated spatially correlated Gaussian noise for \(2\) vertical neighbor voxels (red and blue) plotted against time (each \(2\) s); \(\mathop {\hbox {Corr}}_t(\varepsilon _{t,1},\varepsilon _{t,2})=0.97\).

Fig. 12
figure 12

Simulated stimulus time series as the AR(\(2\)) process: \(\widetilde{Z}_{t}=0.5\widetilde{Z}_{t-1}+0.2\widetilde{Z}_{t-2}+\varepsilon _{AR,t}\), plotted against time (each \(2\) s).

1.2 Clustering and Sensitivity Analysis

Fig. 13
figure 13

Sensitivity analysis of the risk attitude \(\phi \): estimates \(\widehat{\phi }_i, i=1,\ldots ,19\) with \(95\,\%\) confidence intervals.

Fig. 14
figure 14

The derived risk attitude of subject \(1\) in a rolling window exercise (\(\widehat{\phi }_i\) estimated from past \(100\) ID answers).

Fig. 15
figure 15

Time series of the correlation coefficient derived by the rolling window (250 top, 500 bottom) for the center voxel and: horizontal, vertical diagonal neighboring voxel for aINS(right) of subject 1.

Fig. 16
figure 16

Contour plots of derived aINS(left), aINS(right) and DMPFC (upper, middle lower panel) clusters for subjects \(1\) (left) and \(19\) (right), respectively; derived by the NCUT algorithm with \(C=1,000\). \(x\), \(y\) \(z\) axis denote the \(3D\) space given in millimeters.

1.3 Factor Loadings

Fig. 17
figure 17

Sample autocorrelation function of aINS(left), aINS(right), and DMPFC \(\widehat{Z}_t\) (top left, top right, bottom panel, respectively) for subjects \(1\) (top) and \(19\) (bottom), respectively.

Table 4 KPSS, ADF test statistics for estimated factor loadings aINS(left), aINS(right), and DMPFC \(\widehat{Z}_t\); subject \(1\) (left panel), subject \(19\) (right panel) (KPSS: \(H_0\): weak stationarity, critical values at \(0.10\), \(0.05\), \(0.01\) are \(0.119\), \(0.146\), and \(0.216\); ADF: \(H_0\): unit root, critical values at \(0.01\), \(0.05\), \(0.10\) are \(-1.61\), \(-1.94\), and \(-2.58\)).
Table 5 The position of the cluster local maximum, denoted in the Montreal Neurological Institute (MNI) standard at \(2\)mm resolution, corresponding \(Z\)-score (middle) and \(p\) value (bottom) of activated “risk” clusters during the ID stimuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majer, P., Mohr, P.N.C., Heekeren, H.R. et al. Portfolio Decisions and Brain Reactions via the CEAD method. Psychometrika 81, 881–903 (2016). https://doi.org/10.1007/s11336-015-9441-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-015-9441-5

Keywords

JEL Classification

Navigation