Skip to main content

Advertisement

Log in

Airway cell involvement in intermittent hypoxia-induced airway inflammation

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Respiratory inflammation has been described in patients with obstructive sleep apnea syndrome, but it is unknown whether the increased neutrophil and interleukin (IL)-8 levels observed in induced sputum reflect systemic or local airway inflammation. We assessed the potential role of resident cells in intermittent hypoxia-induced airway inflammation.

Methods

Airway epithelial cells (AEC) and bronchial smooth muscle cells (BSMC) were exposed to intermittent hypoxia (IH) in vitro. Cell supernatants were assessed for matrix metalloproteinase, growth factor, and cytokine expression. The role of IH on neutrophil and BSMC migration capacities was evaluated, and the effect of supernatants from IH-exposed or control AEC was tested.

Results

Compared to normoxic conditions, 24 h of exposure to IH induced a significant increase of MMP-9 and MMP-2 expression and pro-MMP-9 activation (p < 0.05), and IL-8 (p < 0.05), platelet-derived growth factor (PDGF)-AA (p < 0.05), and vascular endothelial growth factor (VEGF) (p < 0.05) expression by AEC and VEGF expression (p = 0.04) by BSMC. Neutrophil chemotaxis and BSMC migration were enhanced by IH and supernatants of IH-exposed AEC (112.00 ± 4.80 versus 0.69 ± 0.43 %, p = 0.0053 and 247 ± 76 versus 21 ± 23, p = 0.009 respectively). This enhanced BSMC migration was totally abolished in the presence of an antibody blocking PDGF-AA.

Conclusions

These data suggest a specific inflammatory response of airway cells to IH, independently of systemic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AECs:

Airway epithelial cells

BSMCs:

Bronchial smooth muscle cells

FCS:

Fetal calf serum

IH:

Intermittent hypoxia

IL:

Interleukin

MMPs:

Matrix metalloproteinases

Nx:

Normoxia

OSAS:

Obstructive sleep apnea syndrome

PBS:

Phosphate buffered saline

PDGF:

Platelet-derived growth factor

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

VEGF:

Vascular endothelial growth factor

References

  1. Garvey JF, Taylor CT, McNicholas WT (2009) Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J 33:1195–1205

    Article  CAS  PubMed  Google Scholar 

  2. Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev 7:35–51

    Article  PubMed  Google Scholar 

  3. Dyugovskaya L, Polyakov A, Lavie P, Lavie L (2008) Delayed neutrophil apoptosis in patients with sleep apnea. Am J Respir Crit Care Med 177:544–554

    Article  CAS  PubMed  Google Scholar 

  4. Levy P, Tamisier R, Minville C, Launois S, Pepin JL (2011) Sleep apnoea syndrome in 2011: current concepts and future directions. Eur Respir Rev 20:134–146

    Article  CAS  PubMed  Google Scholar 

  5. Salerno FG, Carpagnano E, Guido P, Bonsignore MR, Roberti A, Aliani M, Vignola AM, Spanevello A (2004) Airway inflammation in patients affected by obstructive sleep apnea syndrome. Respir Med 98:25–28

    Article  CAS  PubMed  Google Scholar 

  6. Devouassoux G, Levy P, Rossini E, Pin I, Fior-Gozlan M, Henry M, Seigneurin D, Pepin JL (2007) Sleep apnea is associated with bronchial inflammation and continuous positive airway pressure-induced airway hyperresponsiveness. J Allergy Clin Immunol 119:597–603

    Article  PubMed  Google Scholar 

  7. Carpagnano GE, Spanevello A, Sabato R, Depalo A, Palladino GP, Bergantino L, Foschino Barbaro MP (2010) Systemic and airway inflammation in sleep apnea and obesity: the role of ICAM-1 and IL-8. Transl Res 155:35–43

    Article  CAS  PubMed  Google Scholar 

  8. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122:1162–1167

    Article  CAS  PubMed  Google Scholar 

  9. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343:591–596

    Article  CAS  PubMed  Google Scholar 

  10. Gruenert DC, Finkbeiner WE, Widdicombe JH (1995) Culture and transformation of human airway epithelial cells. Am J Physiol 268:L347–L360

    CAS  PubMed  Google Scholar 

  11. Coste A, Brugel L, Maitre B, Boussat S, Papon JF, Wingerstmann L, Peynegre R, Escudier E (2000) Inflammatory cells as well as epithelial cells in nasal polyps express vascular endothelial growth factor. Eur Respir J 15:367–372

    Article  CAS  PubMed  Google Scholar 

  12. d’Ortho MP, Clerici C, Yao PM, Delacourt C, Delclaux C, Franco-Montoya ML, Harf A, Lafuma C (1997) Alveolar epithelial cells in vitro produce gelatinases and tissue inhibitor of matrix metalloproteinase-2. Am J Physiol 273:L663–L675

    PubMed  Google Scholar 

  13. Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol 115:1650–1656

    CAS  PubMed  Google Scholar 

  14. Bosse Y, Thompson C, Stankova J, Rola-Pleszczynski M (2006) Fibroblast growth factor 2 and transforming growth factor beta1 synergism in human bronchial smooth muscle cell proliferation. Am J Respir Cell Mol Biol 34:746–753

    Article  CAS  PubMed  Google Scholar 

  15. Nishihara-Fujihara M, Shoji S, Maeda I, Shimoda T, Nishima S, Okamoto K (2010) Involvement of fibronectin and matrix metalloproteinases in airway smooth muscle cell migration for the process of airway remodeling. Allergol Int 59:267–275

    Article  CAS  PubMed  Google Scholar 

  16. Gozal E, Sachleben LR Jr, Rane MJ, Vega C, Gozal D (2005) Mild sustained and intermittent hypoxia induce apoptosis in PC-12 cells via different mechanisms. Am J Physiol-Cell PH 288:C535–C542

    Article  CAS  Google Scholar 

  17. Lattimore JD, Wilcox I, Nakhla S, Langenfeld M, Jessup W, Celermajer DS (2005) Repetitive hypoxia increases lipid loading in human macrophages—a potentially atherogenic effect. Atherosclerosis 179:255–259

    Article  CAS  PubMed  Google Scholar 

  18. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  CAS  PubMed  Google Scholar 

  19. Baumgardner JE, Otto CM (2003) In vitro intermittent hypoxia: challenges for creating hypoxia in cell culture. Respir Physiol Neurobiol 136:131–139

    Article  CAS  PubMed  Google Scholar 

  20. Yuan G, Nanduri J, Bhasker CR, Semenza GL, Prabhakar N (2005) Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem 280(6):4321–4328

    Article  CAS  PubMed  Google Scholar 

  21. Aihara K, Oga T, Chihara Y, Harada Y, Tanizawa K, Handa T, Hitomi T, Uno K, Mishima M, Chin K (2013) Analysis of systemic and airway inflammation in obstructive sleep apnea. Sleep Breath 17(2):597–604

    Article  PubMed  Google Scholar 

  22. Munakata M (2006) Airway remodeling and airway smooth muscle in asthma. Allergol Int 55:235–243

    Article  CAS  PubMed  Google Scholar 

  23. Calvet JH, Planus E, Rouet P, Pezet S, Levame M, Lafuma C, Harf A, D'Ortho MP (1999) Matrix metalloproteinase gelatinases in sulfur mustard-induced acute airway injury in guinea pigs. Am J Physiol 276:L754–L762

    CAS  PubMed  Google Scholar 

  24. Guignabert C, Taysse L, Calvet JH, Planus E, Delamanche S, Galiacy S, d'Ortho MP (2005) Effect of doxycycline on sulfur mustard-induced respiratory lesions in guinea pigs. Am J Physiol Lung Cell Mol Physiol 289:L67–L74

    Article  CAS  PubMed  Google Scholar 

  25. Zerah-Lancner F, Lofaso F, Coste A, Ricolfi F, Goldenberg F, Harf A (1997) Pulmonary function in obese snorers with or without sleep apnea syndrome. Am J Respir Crit Care Med 156:522–527

    Article  CAS  PubMed  Google Scholar 

  26. Teodorescu M, Polomis DA, Hall SV, Teodorescu MC, Gangnon RE, Peterson AG, Xie A, Sorkness CA, Jarjour NN (2010) Association of obstructive sleep apnea risk with asthma control in adults. Chest 138:543–550

    Article  PubMed Central  PubMed  Google Scholar 

  27. Pantano C, Ather JL, Alcorn JF, Poynter ME, Brown AL, Guala AS, Beuschel SL, Allen GB, Whittaker LA, Bevelander M, Irvin CG, Janssen-Heininger YM (2008) Nuclear factor-kappa b activation in airway epithelium induces inflammation and hyperresponsiveness. Am J Respir Crit Care Med 177:959–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Marin JM, Soriano JB, Carrizo SJ, Boldova A, Celli BR (2010) Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea: the overlap syndrome. Am J Respir Crit Care Med 182:325–331

    Article  PubMed  Google Scholar 

  29. Drager LF, Polotsky VY, Lorenzi-Filho G (2011) Obstructive sleep apnea: an emerging risk factor for atherosclerosis. Chest 140:534–542

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jun J, Polotsky VY (2009) Metabolic consequences of sleep-disordered breathing. ILAR J 50:289–306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to D. Bokar-Thire and L. Margarit for their technical assistance and to Dr A. Saul for his English expertise. We are very grateful to Bernadette Lescure at the microassay platform (Institut de Recherche en Santé, IFR65, Paris, France) for cytokines assays. This work was funded by the nonprofit Air-Liquide Foundation and INSERM.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Philippe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philippe, C., Boussadia, Y., Prulière-Escabasse, V. et al. Airway cell involvement in intermittent hypoxia-induced airway inflammation. Sleep Breath 19, 297–306 (2015). https://doi.org/10.1007/s11325-014-1019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-014-1019-4

Keywords

Navigation