Skip to main content

Advertisement

Log in

Effects of high altitude training on exercise capacity: fact or myth

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Introduction

High altitude training has become a mainstay in endurance sports, with live high–train low as the current protocol of choice. Athletes either live or sleep in artificial or natural hypoxic conditions with the aim to increase serum erythropoietin concentrations, which are thought to improve maximum oxygen uptake and thus exercise performance.

Discussion

Changes, however, are not very striking and only apparent in so-called responders, who are not a well-defined group and may be as little as 50% of the trained study population. Whereas some studies show minor improvement, others report no change or even worsening. Furthermore, the mechanisms behind the proposed beneficial changes remain obscure and are far from being proven. There is an evident lack of sufficiently powered randomized, double-blinded studies, with training protocols that are identical for all groups and groups that are indeed comparable. Several studies discriminate between responders and non-responders, without clearly assessing the characteristics of the so-called responders. Until this has been done, it remains unclear if such a group really exists and how these subjects are characterized. This, however, would be of immense value, so protocols could be tailored to athletes’ needs. Taken together, the current literature on natural or artificial hypoxia somewhat documents improved performance at high but not low altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashenden MJ, Gore CJ, Dobson GP, Hahn AG (1999) “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol Occup Physiol 80:479–484

    Article  PubMed  CAS  Google Scholar 

  2. Ashenden MJ, Gore CJ, Martin DT, Dobson GP, Hahn AG (1999) Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol Occup Physiol 80:472–478

    Article  PubMed  CAS  Google Scholar 

  3. Burtscher M, Haider T, Domej W, Linser T, Gatterer H, Faulhaber M, Pocecco E, Ehrenburg I, Tkatchuk E, Koch R, Bernardi L (2009) Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respir Physiol Neurobiol 165:97–103

    Article  PubMed  CAS  Google Scholar 

  4. Dehnert C, Hutler M, Liu Y, Menold E, Netzer C, Schick R, Kubanek B, Lehmann M, Böning D, Steinacker JM (2002) Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. Int J Sports Med 23:561–566

    Article  PubMed  CAS  Google Scholar 

  5. Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, Lampert E, Flück M, Hoppeler H, Billat V, Mettauer B, Richard R, Lonsdorfer J (2006) Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Physiol 100:1238–1248

    Article  PubMed  CAS  Google Scholar 

  6. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788

    PubMed  CAS  Google Scholar 

  7. Gore CJ, Clark SA, Saunders PU (2007) Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc 39:1600–1609

    Article  PubMed  Google Scholar 

  8. Gore CJ, Hahn AG, Aughey RJ, Martin DT, Ashenden MJ, Clark SA, Garnham AP, Roberts AD, Slater GJ, McKenna MJ (2001) Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand 173:275–286

    Article  PubMed  CAS  Google Scholar 

  9. Gore CJ, Hopkins WG (2005) Counterpoint: positive effects of intermittent hypoxia (live high:train low) on exercise performance are not mediated primarily by augmented red cell volume. J Appl Physiol 99:2055–2057, discussion 2057–2058

    Article  PubMed  Google Scholar 

  10. Gore CJ, Rodríguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD (2006) Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia. (4,000–5,500 m). J Appl Physiol 101:1386–1393

    Article  PubMed  CAS  Google Scholar 

  11. Hahn AG, Gore CJ (2001) The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 31:533–557

    Article  PubMed  CAS  Google Scholar 

  12. Hahn AG, Gore CJ, Martin DT, Ashenden MJ, Roberts AD, Logan PA (2001) An evaluation of the concept of living at moderate altitude and training at sea level. Comp Biochem Physiol A 128:777–789

    Article  CAS  Google Scholar 

  13. Hamlin MJ, Hellemans J (2007) Effect of intermittent normobaric hypoxic exposure at rest on haematological, physiological, and performance parameters in multi-sport athletes. J Sport Sci 25(4):431–441

    Article  Google Scholar 

  14. Hinckson EA, Hopkins WG, Edwards JS, Pfitzinger P, Hellemans J (2005) Sea-level performance in runners using altitude tents: a field study. J Sci Med Sport 8:451–457

    Article  PubMed  CAS  Google Scholar 

  15. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  PubMed  CAS  Google Scholar 

  16. Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, Hahn AG, Parisotto R, Levine BD (2004) Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 96:1800–1807

    Article  PubMed  CAS  Google Scholar 

  17. Katayama K, Matsuo H, Ishida K, Mori S, Miyamura M (2003) Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Alt Med Biol 4:291–304

    Article  PubMed  Google Scholar 

  18. Katayama K, Sato K, Matsuo H, Ishida K, Iwasaki K, Miyamura M (2004) Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur J Appl Physiol 92:75–83

    Article  PubMed  Google Scholar 

  19. Levine BD, Stray-Gundersen J (1997) “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83(1):102–112

    PubMed  CAS  Google Scholar 

  20. Levine BD, Stray-Gundersen J (2005) Point:counterpoint: positive effects of intermittent hypoxia (live high:train low) on exercise are/are not mediated primarily by augmented red cell volume. J Appl Physiol 99:2053–2055

    Article  PubMed  Google Scholar 

  21. Lundby C, Calbet JAL, Sander M, van Hall G, Mazzeo RS, Stray-Gundersen J, Stager JM, Chapman RF, Saltin B, Levine BD (2007) Exercise economy does not change after acclimatization to moderate to very high altitude. Scand J Med Sci Sport 17:281–291

    CAS  Google Scholar 

  22. Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol 100:1249–1257

    Article  PubMed  CAS  Google Scholar 

  23. Reynafarje C, Lozano R, Valdivieso J (1959) The polycythemia of high altitudes: iron metabolism and related aspects. Blood 14:433–455

    PubMed  CAS  Google Scholar 

  24. Rodriguez FA, Ventura JL, Casas M, Casas H, Pagés T, Rama R, Ricart A, Palacios L, Viscor G (2000) Erythropoietin acute reaction and hematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol Occup Physiol 82:170–177

    Article  CAS  Google Scholar 

  25. Saltin B (1996) Exercise and the environment: focus on altitude. Res Q Exerc Sport 67:S1–S10

    PubMed  CAS  Google Scholar 

  26. Sasaki R, Masuda S, Nagao M (2000) Erythropoietin: multiple physiological functions and regulation of biosynthesis. Biosci Biotechnol Biochem 64:1775–1793

    Article  PubMed  CAS  Google Scholar 

  27. Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, Hawley JA (2004) Improved running economy in elite runners after 20 days of moderate simulated altitude exposure. J Appl Physiol 96:931–937

    Article  PubMed  CAS  Google Scholar 

  28. Terrados N, Melichna J, Sylven C, Jansson E, Kaijser L (1988) Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol Occup Physiol 57:203–209

    Article  PubMed  CAS  Google Scholar 

  29. Vallier JM, Chateau P, Guezennec CY (1996) Effects of physical training in a hypobaric chamber on the physical performance of competitive triathletes. Eur J Appl Physiol Occup Physiol 73:471–478

    Article  PubMed  CAS  Google Scholar 

  30. Wehrlin JP, Zuerst P, Hallén P, Marti B (2006) Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol 100:1938–1945

    Article  PubMed  CAS  Google Scholar 

  31. Wallechinsky D (2004) The complete book of the Summer Olympics, Athens 2004th edn. Sport Media, Toronto

    Google Scholar 

  32. Wilber RL (2001) Current trends in altitude training. Sports Med 31:249–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Niebauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paula, P., Niebauer, J. Effects of high altitude training on exercise capacity: fact or myth. Sleep Breath 16, 233–239 (2012). https://doi.org/10.1007/s11325-010-0445-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-010-0445-1

Keywords

Navigation