Skip to main content
Log in

Prediction of the susceptibility to AMS in simulated altitude

  • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Acute mountain sickness (AMS) develops when rapidly ascending to high altitudes. However, some mountaineers will suffer from AMS even at 2,000 m and others not until 5,000 m. The awareness of the individual susceptibility for AMS would be helpful for preventive strategies. Thus, the main purpose of this paper is the comparison of existing studies dealing with the prediction of AMS susceptibility and to draw conclusions on presently most valuable tests. Data source: A PubMed search has been performed, and preliminary observations from our laboratory have been included. The cautious conclusion derived from the reviewed 16 studies is that values of arterial oxygen saturation (SaO2), determined 20–30 min after exposure to simulated hypoxia equivalent to 2,300–4,200 m, seem to be the most useful predictors of AMS susceptibility (>80% correct prediction). Because the sympathetic activation during acute exposure to hypoxia may well contribute to the AMS development, parameters like heart rate variability or blood lactate could even enhance this predictability. The ventilatory response to hypoxia is easily trainable by pre-exposures to hypoxia but considers only part of the complex acclimatization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Honigman B, Theiss MK, Koziol-McLain J, Roach R, Yip R, Houston C, Moore LG (1993) Acute mountain sickness in a general tourist population at moderate altitudes. Ann Intern Med 118:587–592

    PubMed  CAS  Google Scholar 

  2. Maggorini M, Bühler B, Walter M, Oelz O (1990) Prevalence of acute mountain sickness in the Swiss Alps. BMJ 301:853–855

    Google Scholar 

  3. Schneider M, Bernasch D, Weymann J, Holle R, Bärtsch P (2002) Acute mountain sickness: influence of susceptibility, pre-exposure and ascent rate. Med Sci Sports Exerc 34:1886–1891

    Article  PubMed  Google Scholar 

  4. Bärtsch P, Swenson E, Paul A, Jülg B, Hohenhaus E (2002) Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness. High Alt Med Biol 3:361–376

    Article  PubMed  Google Scholar 

  5. Burtscher M, Flatz M, Faulhaber M (2004) Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol 5:335–340

    PubMed  Google Scholar 

  6. Milledge JS, Beeley JM, Broome J, Luff N, Pelling M, Smith D (1991) Acute mountain sickness susceptibility, fitness and hypoxic ventilatory response. Eur Respir J 4:1000–1003

    PubMed  CAS  Google Scholar 

  7. Moore LG, Harrison GL, McCullough RG, Micco AJ, Tucker A, Weil JV, Reeves JT (1986) Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol 60:1407–1412

    PubMed  CAS  Google Scholar 

  8. Rathat C, Richalet JP, Herry JP, Larmignat P (1992) Detection of high risk subjects for high altitude disease. Int J Sports Med 13:76–79

    Article  Google Scholar 

  9. Richalet J, Keromas A, Dersch B, Corizzi F, Mehdioui H, Pophillat B, Chardonnet H, Tassery F, Herry JP, Rathat C, Chaduteau C, Darnaud B (1988) Charatéristiques physiologiques des alpinistes de haute altitude. Sci Sports 3:89–108

    Article  Google Scholar 

  10. Milledge JS, Thomas PS, Beeley JM, English JS (1988) Hypoxic ventilatory response and acute mountain sickness. Eur Respir J 1:938–951

    Google Scholar 

  11. Hohenhaus E, Paul A, McCullough RE, Kücherer H, Bärtsch P (1995) Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema. Eur Respir J 8:1825–1833

    Article  PubMed  CAS  Google Scholar 

  12. Savourey G, Moirant C, Eterradossi J, Bittel J (1995) Acute mountain sickness relates to sea-level partial pressure of oxygen. Eur J Appl Physiol 70:469–476

    Article  CAS  Google Scholar 

  13. Selland MA, Stelzner TJ, Stevens T, Mazzeo RS, McCullough RE, Reeves JT (1993) Pulmonary function and hypoxic ventilatory response in subjects susceptible to high-altitude pulmonary edema. Chest 103:111–116

    Article  PubMed  CAS  Google Scholar 

  14. Roach RC, Greene ER, Schoene RB, Hackett PH (1998) Arterial oxygen saturation for prediction of acute mountain sickness. Aviat Space Environ Med 69:1182–1185

    PubMed  CAS  Google Scholar 

  15. Muza SR, Pock PB, Zupan MF, Miller JC, Thomas WR, Cymerman A (2004) Residence at moderate altitude improves ventilatory response to high altitude. Aviat Space Environ Med 75:1042–1048

    PubMed  Google Scholar 

  16. Hayat A, Hussain MM, Aziz S, Siddiqui AH, Hussain T (2006) Hyperventilatory capacity—a predictor of altitude sickness. J Ayub Med Coll Abbottabad 18:17–20

    PubMed  Google Scholar 

  17. Austin D, Sleigh J (1995) Prediction of acute mountain sickness. BMJ 311:989–990

    PubMed  CAS  Google Scholar 

  18. Grant S, MacLeod N, Kay JW, Matt M, Patel S, Paterson A, Peacock A (2002) Sea level and acute responses to hypoxia: do they predict physiological responses and acute mountain sickness at altitude. Br J Sports Med 36:141–146

    Article  PubMed  CAS  Google Scholar 

  19. Savourey G, Launay JC, Besnard Y, Guinet-Lebreton A, Alonso A, Sauvet F, Bourrilhon C (2007) Normo or hypobaric tests: propositions for the determination of the individual susceptibility to altitude illnesses. Eur J Appl Physiol 100:193–205

    Article  PubMed  Google Scholar 

  20. Roach RC, Bärtsch P, Hackett PH, Oelz O (1993) The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G (eds) Hypoxia and molecular medicine. Queen City Printers, Burlington, pp 272–27

    Google Scholar 

  21. Schoene B, Lahiri S, Hackett PH, Peters RM, Milledge JS, Pizzo CJ, Sarnquist FH, Boyer SJ, Graber DJ, Maret H et al (1984) Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. J Appl Physiol 56:1478–1483

    PubMed  CAS  Google Scholar 

  22. Reeves JT, McCullough RE, Moore LG, Cymerman A, Weil JV (1993) Sea-level PCO2 relates to ventilatory acclimatization at 4300 m. J Appl Physiol 75:1117–1122

    PubMed  CAS  Google Scholar 

  23. Ursino M, Magosso E, Avanzolini G (2001) An integrated model of the human ventilatory control system the response to hypoxia. Clin Physiol 21:465–477

    Article  PubMed  CAS  Google Scholar 

  24. Liang PJ, Bascom DA, Robbins PA (1997) Extended models of the ventilatory response to sustained isocapnic hypoxia in humans. J Appl Physiol 82:667–677

    PubMed  CAS  Google Scholar 

  25. Bailey DM, Davies B, Castell LM, Collier DJ, Milledge JS, Hullin DA, Seddon PS, Young IS (2003) Symptoms of infection and acute mountain sickness; associated metabolic sequelae and problems in differential diagnosis. High Alt Med Biol 4:319–331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Burtscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burtscher, M., Szubski, C. & Faulhaber, M. Prediction of the susceptibility to AMS in simulated altitude. Sleep Breath 12, 103–108 (2008). https://doi.org/10.1007/s11325-007-0131-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-007-0131-0

Keywords

Navigation