Skip to main content
Log in

Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging

  • Special Topic
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol

  2. Petrone J (2016) DNA writers attract investors. Nat Biotech 34:363–364

    Article  CAS  Google Scholar 

  3. Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252

    Article  CAS  PubMed  Google Scholar 

  4. Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of the National Academy of Sciences 112:14429–14435

  5. Fischbach MA, Bluestone JA, Lim WA (2013) Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 5:179ps177

    Article  Google Scholar 

  6. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yurist-Doutsch S, Arrieta M-C, Vogt SL, Finlay BB (2014) Gastrointestinal microbiota-mediated control of enteric pathogens. Annu Rev Genet 48:361–382

    Article  CAS  PubMed  Google Scholar 

  8. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12

    Article  PubMed  Google Scholar 

  10. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469-1480–1469e1412

    Article  Google Scholar 

  11. Danino T, Prindle A, Kwong GA et al (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7:289ra284

    Article  Google Scholar 

  12. Kotula JW, Kerns SJ, Shaket LA, et al. (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proceedings of the National Academy of Sciences 111:4838–4843

  13. Archer EJ, Robinson AB, Süel GM (2012) Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth Biol 1:451–457

    Article  CAS  PubMed  Google Scholar 

  14. Claesen J, Fischbach MA (2014) Synthetic microbes as drug delivery systems. ACS Synth Biol 4:358–364

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362

    Article  CAS  PubMed  Google Scholar 

  16. Din MO, Danino T, Prindle A et al (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536:81–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotech 31:448–452

    Article  CAS  Google Scholar 

  18. Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68

    Article  CAS  PubMed  Google Scholar 

  20. Klebanoff CA, Rosenberg SA, Restifo NP (2016) Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med 22:26–36

    Article  CAS  PubMed  Google Scholar 

  21. Roybal KT, Rupp LJ, Morsut L et al (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fedorov VD, Themeli M, Sadelain M (2013) PD-1–and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  24. Todhunter ME, Jee NY, Hughes AJ et al (2015) Programmed synthesis of three-dimensional tissues. Nat Meth 12:975–981

    Article  CAS  Google Scholar 

  25. Sellmyer MA, Bronsart L, Imoto H, Contag CH, Wandless TJ, Prescher JA (2013) Visualizing cellular interactions with a generalized proximity reporter. Proc Natl Acad Sci U S A 110:8567–8572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye H, Baba MD-E, Peng R-W, Fussenegger M (2011) A synthetic Optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568

    Article  CAS  PubMed  Google Scholar 

  27. Kemmer C, Gitzinger M, Daoud-El Baba M, Djonov V, Stelling J, Fussenegger M (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotech 28:355–360

    Article  CAS  Google Scholar 

  28. Ni Q, Ganesan A, Aye-Han NN et al (2011) Signaling diversity of PKA achieved via a Ca2 + −cAMP-PKA oscillatory circuit. Nat Chem Biol 7:34–40

    Article  CAS  PubMed  Google Scholar 

  29. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotech 32:347–355

    Article  CAS  Google Scholar 

  31. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  32. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  33. Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7:5–15

    CAS  PubMed  Google Scholar 

  34. Zhao H, Doyle TC, Wong RJ et al (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3:43–54

    Article  CAS  PubMed  Google Scholar 

  35. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  CAS  PubMed  Google Scholar 

  36. Prescher JA, Contag CH (2010) Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14:80–89

    Article  CAS  PubMed  Google Scholar 

  37. Tjuvajev JG, Stockhammer G, Desai R et al (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132

    CAS  PubMed  Google Scholar 

  38. Gambhir SS, Barrio JR, Phelps ME et al (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A 96:2333–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koretsky AP, Brosnan MJ, Chen LH, Chen JD, Van Dyke T (1990) NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci U S A 87:3112–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotech 18:321–325

    Article  CAS  Google Scholar 

  41. Cohen B, Dafni H, Meir G, Harmelin A, Neeman M (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454

    Article  CAS  PubMed  Google Scholar 

  43. Deans AE, Wadghiri YZ, Bernas LM, Yu X, Rutt BK, Turnbull DH (2006) Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 56:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Airan RD, Bar-Shir A, Liu G et al (2012) MRI biosensor for protein kinase a encoded by a single synthetic gene. Magn Reson Med 68:1919–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bar-Shir A, Liu G, Liang Y et al (2013) Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. J Am Chem Soc 135:1617–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilad AA, McMahon MT, Walczak P et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217–219

    Article  CAS  PubMed  Google Scholar 

  47. Bar-Shir A, Liu G, Chan KW et al (2014) Human protamine-1 as an MRI reporter gene based on chemical exchange. ACS Chem Biol 9:134–138

    Article  CAS  PubMed  Google Scholar 

  48. Liu G, Liang Y, Bar-Shir A et al (2011) Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. J Am Chem Soc 133:16326–16329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bar-Shir A, Liu G, Greenberg MM, Bulte JWM, Gilad AA (2013) Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat Protocols 8:2380–2391

    Article  CAS  PubMed  Google Scholar 

  50. Patrick PS, Rodrigues TB, Kettunen MI, Lyons SK, Neves AA, Brindle KM (2015) Development of Timd2 as a reporter gene for MRI. Magnetic resonance in medicine

  51. Shapiro MG, Ramirez RM, Sperling LJ et al (2014) Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nature Chem 6:629–634

    Article  CAS  Google Scholar 

  52. Wang Y, Roose BW, Palovcak EJ, Carnevale V, Dmochowski IJ (2016) A genetically encoded β-lactamase reporter for ultrasensitive 129Xe NMR in mammalian cells. Angew Chem Int Ed 55:8984–8987

    Article  CAS  Google Scholar 

  53. Mukherjee A, Wu D, Davis HC, Shapiro MG (2016) Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun 7:13891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schilling F, Ros S, Hu D-E, et al. (2016) MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotech advance online publication

  55. Desai M, Slusarczyk AL, Chapin A, Barch M, Jasanoff A (2016) Molecular imaging with engineered physiology. Nat Commun 7:13607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8:677–688

    Article  CAS  PubMed  Google Scholar 

  57. Bar-Shir A, Bulte JW, Gilad AA (2015) Molecular Engineering of Nonmetallic Biosensors for CEST MRI. ACS Chem Biol

  58. Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JW (2015) Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 8:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yaghoubi SS, Jensen MC, Satyamurthy N et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F–FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58

    Article  CAS  PubMed  Google Scholar 

  60. Gambhir S, Herschman H, Cherry SR et al (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2:118–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith-Bindman R, Miglioretti DL, Johnson E et al (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA 307:2400–2409

    Article  CAS  PubMed  Google Scholar 

  62. Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26:1–27

    Article  CAS  PubMed  Google Scholar 

  63. Foster FS, Lockwood G, Ryan L, Harasiewicz K, Berube L, Rauth A (1993) Principles and applications of ultrasound backscatter microscopy. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 40:608–617

    Article  CAS  Google Scholar 

  64. Errico C, Pierre J, Pezet S et al (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527:499–502

    Article  CAS  PubMed  Google Scholar 

  65. Shapiro MG, Goodwill PW, Neogy A et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lakshmanan A, Farhadi A, Nety SP et al (2016) Molecular engineering of acoustic protein nanostructures. ACS Nano 10:7314–7322

    Article  CAS  PubMed  Google Scholar 

  67. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227

    Article  CAS  Google Scholar 

  69. Yao J, Kaberniuk AA, Li L et al (2016) Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods 13:67–73

    CAS  PubMed  Google Scholar 

  70. Jiang Y, Sigmund F, Reber J, et al. (2015) Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging. Scientific reports 5

  71. Deán-Ben XL, Sela G, Lauri A et al (2016) Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light: Science & Applications 5:e16201

    Article  Google Scholar 

  72. Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19:1142–1153

    Article  PubMed  Google Scholar 

  73. Shapiro MG, Westmeyer GG, Romero PA et al (2010) Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 28:264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deckers R, Quesson B, Arsaut J, Eimer S, Couillaud F, Moonen CT (2009) Image-guided, noninvasive, spatiotemporal control of gene expression. Proceedings of the National Academy of Sciences 106:1175–1180

  75. Piraner DI, Abedi MH, Moser BA, Lee-Gosselin A, Shapiro MG (2017) Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol 13:75–80

    Article  CAS  PubMed  Google Scholar 

  76. Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–606

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Shapiro and Gilad labs and the founding members of the Synthetic Biology and Reporter Genes (SyBRG) interest group of the World Molecular Imaging Society for their contributions to this field and the ideas presented in this article. In addition to the authors, founding members of SyBRG include Christopher Contag, Michal Neeman, Roger Tsien, David Piwnica-Worms, Michael Lin, Daniel Turnbull, Stuart Foster, Michael McMahon, Jeff Bulte, Brian Rutt, Vladimir Ponomarev, Erik Shapiro, Alan Jasanoff, Jeffrey Cirillo, Vasilis Ntziachristos, Jianghong Rao, Moriel Vandsburger, Gil Westmeyer, Brian Chow, and Il Minn. We also note with regret that, due to space limitations, we were not able to cite all the relevant work in this field and instead reference a smaller number of examples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Assaf A. Gilad or Mikhail G. Shapiro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilad, A.A., Shapiro, M.G. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging. Mol Imaging Biol 19, 373–378 (2017). https://doi.org/10.1007/s11307-017-1062-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1062-1

Key words

Navigation