Skip to main content
Log in

Ultrasound Molecular Imaging and Drug Delivery

  • Special Topic
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Ultrasound is a rapidly advancing field with many emerging diagnostic and therapeutic applications. For diagnostics, new vascular targets are routinely identified and mature technologies are being translated to humans, while other recent innovations may bring about the creation of acoustic reporter genes and micron-scale resolution with ultrasound. As a cancer therapy, ultrasound is being explored as an adjuvant to immune therapies and to deliver acoustically or thermally active drugs to tumor regions. Ultrasound-enhanced delivery across the blood brain barrier (BBB) could potentially be very impactful for brain cancers and neurodegenerative diseases where the BBB often impedes the delivery of therapeutic molecules. In this minireview, we provide an overview of these topics in the field of ultrasound that are especially relevant to the interests of World Molecular Imaging Society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Hu X, Caskey C, Mahakian L et al (2012) In vivo validation and 3D visualization of broadband ultrasound molecular imaging. Am J Nucl Med Mol Imaging 3:336–349

    Google Scholar 

  2. Korpanty G, Carbon JG, Grayburn PA et al (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330

    Article  CAS  PubMed  Google Scholar 

  3. Ellegala DB, Leong-Poi H, Carpenter JE et al (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation 108:336–341

    Article  PubMed  Google Scholar 

  4. Sanna V, Pintus G, Bandiera P et al (2011) Development of polymeric microbubbles targeted to prostate-specific membrane antigen as prototype of novel ultrasound contrast agents. Mol Pharmac 8:748–757

    Article  CAS  Google Scholar 

  5. Bachmann C, Klibanov AL, Olson TS et al (2006) Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn’s disease. Gastroenterology 130:8–16

    Article  CAS  PubMed  Google Scholar 

  6. Kaufmann BA, Lewis C, Xie A et al (2007) Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. Eur Heart J 28:2011–2017

    Article  PubMed  Google Scholar 

  7. Khanicheh E, Qi Y, Xie A et al (2013) Molecular imaging reveals rapid reduction of endothelial activation in early atherosclerosis with apocynin independent of antioxidative properties. Arterioscl Thromb Vasc Biol 33:2187–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abou-Elkacem L, Bachawa SV, Willmann JK (2015) Ultrasound molecular imaging: moving toward clinical translation. Eur J Radiol 84:1685–1693

    Article  PubMed  PubMed Central  Google Scholar 

  9. Willmann JK, Testa A, Rinaldi P et al (2017) Ultrasound molecular imaging in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol, In press 2017

  10. Jackson A, Castle JW, Smith A, Kalli CK (2016) Optison™ albumin microspheres in ultrasound-assisted gene therapy and drug delivery. In Albumin in medicine, ed: Springer, pp. 121–145

  11. Cavalieri F, Finelli I, Tortora M et al (2008) Polymer microbubbles as diagnostic and therapeutic gas delivery device. Chem Mater 20:3254–3258

    Article  CAS  Google Scholar 

  12. Lakshmanan A, Farhadi A, Nety SP et al (2016) Molecular engineering of acoustic protein nanostructures. ACS Nano 10:7314–7322

    Article  CAS  PubMed  Google Scholar 

  13. Shapiro MG, Goodwill PW, Neogy A et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nature Nanotechnol 9:311–316

    Article  CAS  Google Scholar 

  14. O'Reilly MS, Hynynen K (2013) A super-resolution ultrasound method for brain vascular mapping. Med Phys 40:110701

    Article  PubMed  PubMed Central  Google Scholar 

  15. Desailly Y, Couture O, Fink M, Tanter M (2013) Sono-activated ultrasound localization microscopy. Appl Phys Letters 103:174107

    Article  Google Scholar 

  16. Errico C, Pierre J, Pezet S et al (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527:499–502

    Article  CAS  PubMed  Google Scholar 

  17. Foiret J, Zhang H, Mahakian L, et al. (2016) Super-localization of contrast agents in moving organs, first experiments in a rat kidney. In Ultrasonics Symposium (IUS), 2016 I.E. International, 2016, pp. 1–4

  18. Kennedy J, Ter Haar G, Cranston D (2014) High intensity focused ultrasound: surgery of the future? Br J Radiol. doi:10.1259/bjr/17150274

    Google Scholar 

  19. Chapman A, ter Haar G (2007) Thermal ablation of uterine fibroids using MR-guided focused ultrasound-a truly non-invasive treatment modality. Eur Radiol 17:2505–2511

    Article  PubMed  Google Scholar 

  20. Li C, Zhang W, Fan W et al (2010) Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound. Cancer 116:3934–3942

    Article  PubMed  Google Scholar 

  21. Fischer K, Gedroyc W, Jolesz FA (2010) Focused ultrasound as a local therapy for liver cancer. Cancer J 16:118–124

    Article  PubMed  Google Scholar 

  22. Yudina A, Lepetit-Coiffé M, Moonen CT (2011) Evaluation of the temporal window for drug delivery following ultrasound-mediated membrane permeability enhancement. Mol Imaging Biol 13:239–249

    Article  PubMed  Google Scholar 

  23. Rapoport N, Gupta R, Kim Y-S, O'Neill BE (2015) Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: insight through intravital imaging. J Control Release 206:153–160

    Article  CAS  PubMed  Google Scholar 

  24. Wang T-Y, Choe JW, Pu K et al (2015) Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer. J Control Release 203:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Needham D, Anyarambhatla G, Kong G, Dewhirst MW (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60:1197–1201

    CAS  PubMed  Google Scholar 

  26. Kheirolomoom A, Lai C-Y, Tam SM et al (2013) Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J Control Release 172:266–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Silvestrini MT, Kheirolomoom A, Ingham ES et al (2016) Abstract LB-052: activatable nanodelivery combined with CpG-ODN and anti-PD-1 achieves a complete response in directly-treated and contralateral tumors in a murine breast cancer model. Cancer Res 76:LB-052-LB-052

    Article  Google Scholar 

  28. Kotopoulis S, Delalande A, Popa M et al (2014) Sonoporation-enhanced chemotherapy significantly reduces primary tumour burden in an orthotopic pancreatic cancer xenograft. Mol Imaging Biol 16:53–62

    Article  PubMed  Google Scholar 

  29. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging–guided focal opening of the blood-brain barrier in rabbits 1. Radiology 220:640–646

    Article  CAS  PubMed  Google Scholar 

  30. Poon C, McMahon D, Hynynen K (2016) Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacol. doi:10.1016/j.neuropharm.2016.02.014

    Google Scholar 

  31. Treat LH, McDannold N, Zhang Y et al (2012) Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38:1716–1725

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nance E, Timbie K, Miller GW et al (2014) Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood−brain barrier using MRI-guided focused ultrasound. J Control Release 189:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caskey CF, Fite B, Lai CY, (2013) Treatment of brain metastases combining ultrasound, microbubbles, and therapeutics. World Molecular Imaging Congress

  34. Carpentier A, Canney M, Vignot A et al (2016) Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8:343re2

    Article  PubMed  Google Scholar 

  35. Konofagou E, Samiotaki G, Wang S (2015) Neuroprotection and neuroregeneration triggered through the FUS-induced opening of the blood-brain barrier in a Parkinson’s mouse model. J Therap Ultrasound. doi:10.1186/2050-5736-3-S1-O19

    Google Scholar 

  36. Samiotaki G, Acosta C, Wang S, Konofagou EE (2015) Enhanced delivery and bioactivity of the neurturin neurotrophic factor through focused ultrasound—mediated blood–brain barrier opening in vivo. J CerebBlood Flow Metab 35:611–622

    Article  CAS  Google Scholar 

  37. Tan J-KY, Pham B, Zong Y et al (2016) Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain. J Control Release 231:86–93

    Article  CAS  PubMed  Google Scholar 

  38. Burgess A, Dubey S, Yeung S et al (2014) Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior. Radiology 273:736–745

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jordão JF, Thévenot E, Markham-Coultes K et al (2013) Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp Neurol 248:16–29

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leinenga G, Götz J (2015) Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med 7:278ra33

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Caskey.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caskey, C. Ultrasound Molecular Imaging and Drug Delivery. Mol Imaging Biol 19, 336–340 (2017). https://doi.org/10.1007/s11307-017-1058-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1058-x

Key words

Navigation