Skip to main content

Advertisement

Log in

Preclinical Evaluation of an Anti-Nectin-4 ImmunoPET Reagent in Tumor-Bearing Mice and Biodistribution Studies in Cynomolgus Monkeys

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Nectin-4 is selectively overexpressed in a variety of cancers and is currently under clinical investigation as a therapeutic target. A monoclonal antibody against nectin-4 (AGS-22M6) was evaluated as an Immuno-positron emission tomography (ImmunoPET) reagent. Its ability to assay nectin-4 expression as well as detect nectin-4 positive tumors in the liver and bone was evaluated using mouse models.

Procedures

The biodistribution of [89Zr]AGS-22M6 was evaluated in mice bearing tumors with varying levels of nectin-4 expression. An isogenic breast cancer tumor line was used to model metastatic liver and bone disease in mice. The biodistribution of [18F]AGS-22M6 in cynomolgus monkeys was evaluated.

Results

A positive correlation was demonstrated between tumor nectin-4 expression and [89Zr]AGS-22M6 uptake. Tumors in the liver and bone were detected and differentiated based on nectin-4 expression. [18F]AGS-22M6 showed limited uptake in cynomolgus monkey tissues.

Conclusions

[89Zr]AGS-22M6 is a promising ImmunoPET reagent that can assay nectin-4 expression in both primary and metastatic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Samanta D, Almo SC (2015) Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci 72:645–658

    Article  CAS  PubMed  Google Scholar 

  2. Mori M, Rikitake Y, Mandai K, Takai Y (2014) Roles of nectins and nectin-like molecules in the nervous system. Adv Neurobiol 8:91–116

    Article  PubMed  Google Scholar 

  3. Rikitake Y, Mandai K, Takai Y (2012) The role of nectins in different types of cell-cell adhesion. J Cell Sci 125:3713–3722

    Article  CAS  PubMed  Google Scholar 

  4. Athanassiadou AM, Patsouris E, Tsipis A et al (2011) The significance of survivin and nectin-4 expression in the prognosis of breast carcinoma. Folia Histochem Cytobiol 49:26–33

    Article  CAS  PubMed  Google Scholar 

  5. Takano A, Ishikawa N, Nishino R et al (2009) Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res 69:6694–6703

    Article  CAS  PubMed  Google Scholar 

  6. Fabre-Lafay S, Monville F, Garrido-Urbani S et al (2007) Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer 7:73

    Article  PubMed  PubMed Central  Google Scholar 

  7. Derycke MS, Pambuccian SE, Gilks CB et al (2010) Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker. Am J Clin Pathol 134:835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Challita-Eid PM, Satpayev D, Yang P et al (2016) Enfortumab vedotin antibody-drug conjugate targeting Nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. doi:10.1158/0008-5472.CAN-15-1313

  9. Rizvi SN, Visser OJ, Vosjan MJ et al (2012) Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging 39:512–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van de Watering FC, Rijpkema M, Perk L et al (2014) Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. BioMed Res Int 2014:203601

    PubMed  PubMed Central  Google Scholar 

  11. Deri MA, Zeglis BM, Francesconi LC, Lewis JS (2013) PET imaging with (8)(9)Zr: from radiochemistry to the clinic. Nucl Med Biol 40:3–14

    Article  CAS  PubMed  Google Scholar 

  12. Nittka S, Krueger MA, Shively JE et al (2014) Radioimmunoimaging of liver metastases with PET using a 64Cu-labeled CEA antibody in transgenic mice. PLoS One 9:e106921

    Article  PubMed  Google Scholar 

  13. Sham JG, Kievit FM, Grierson JR et al (2014) Glypican-3-targeted 89Zr PET imaging of hepatocellular carcinoma. J Nucl Med 55:799–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592

    Article  CAS  PubMed  Google Scholar 

  15. Pandit-Taskar N, O'Donoghue JA, Beylergil V et al (2014) (8)(9)Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 41:2093–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mortimer JE, Bading JR, Colcher DM et al (2014) Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET. J Nucl Med 55:23–29

    Article  CAS  PubMed  Google Scholar 

  17. Gerratana L, Fanotto V, Bonotto M et al (2015) Pattern of metastasis and outcome in patients with breast cancer. Clin Exp Metastasis 32:125–133

    Article  CAS  PubMed  Google Scholar 

  18. Bianchi M, Roghmann F, Becker A et al (2014) Age-stratified distribution of metastatic sites in bladder cancer: a population-based analysis. Can Urol Assoc J 8:E148–E158

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tamura T, Kurishima K, Nakazawa K et al (2015) Specific organ metastases and survival in metastatic non-small-cell lung cancer. Mol Clin Oncol 3:217–221

    PubMed  Google Scholar 

  20. Green LL (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23

    Article  CAS  PubMed  Google Scholar 

  21. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  22. Tang G, Tang X, Wang X (2010) A facile automated synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for 18F-labeled cell-penetrating peptide as PET tracer. J Label Compd Radiopharm 53:543–547

    Article  CAS  Google Scholar 

  23. Wurdinger T, Badr C, Pike L et al (2008) A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods 5:171–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCarty KS Jr, Miller LS, Cox EB et al (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721

    PubMed  Google Scholar 

  25. Ray GL, Baidoo KE, Wong KJ et al (2009) Preclinical evaluation of a monoclonal antibody targeting the epidermal growth factor receptor as a radioimmunodiagnostic and radioimmunotherapeutic agent. Br J Pharmacol 157:1541–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhattacharyya S, Kurdziel K, Wei L et al (2013) Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl Med Biol 40:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ikotun OF, Marquez BV, Huang C et al (2013) Imaging the L-type amino acid transporter-1 (LAT1) with Zr-89 immunoPET. PLoS One 8:e77476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Terwisscha van Scheltinga AG, Lub-de Hooge MN, Abiraj K et al (2014) ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody (8)(9)Zr-RG7116. MAbs 6:1051–1058

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niu G, Li Z, Xie J, Le QT, Chen X (2009) PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J Nucl Med 50:1116–1123

    Article  CAS  PubMed  Google Scholar 

  30. Mattie M, Christensen A, Chang MS et al (2013) Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics. Neoplasia 15:1138–1150

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fabre-Lafay S, Garrido-Urbani S, Reymond N et al (2005) Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem 280:19543–19550

    Article  CAS  PubMed  Google Scholar 

  32. Nayak TK, Garmestani K, Milenic DE, Brechbiel MW (2012) PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J Nucl Med 53:113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Divgi CR, Welt S, Kris M et al (1991) Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 83:97–104

    Article  CAS  PubMed  Google Scholar 

  34. Jadvar H (2012) Molecular imaging of prostate cancer: PET radiotracers. Am J Roentgenol 199:278–291

    Article  Google Scholar 

  35. Beheshti M, Vali R, Waldenberger P et al (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35:1766–1774

    Article  PubMed  Google Scholar 

  36. Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  37. Knowles SM, Tavare R, Zettlitz KA et al (2014) Applications of immunoPET: using 124I-anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer. Clin Cancer Res 20:6367–6378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean O. Campbell.

Ethics declarations

Conflict of Interest.

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, D.O., Noda, A., Verlinsky, A. et al. Preclinical Evaluation of an Anti-Nectin-4 ImmunoPET Reagent in Tumor-Bearing Mice and Biodistribution Studies in Cynomolgus Monkeys. Mol Imaging Biol 18, 768–775 (2016). https://doi.org/10.1007/s11307-016-0953-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0953-x

Key words

Navigation