Skip to main content
Log in

Facile Synthesis of Folic Acid-Modified Iron Oxide Nanoparticles for Targeted MR Imaging in Pulmonary Tumor Xenografts

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to develop folic acid (FA)-modified iron oxide (Fe3O4) nanoparticles (NPs) for targeted magnetic resonance imaging (MRI) of H460 lung carcinoma cells.

Procedures

Water-dispersible Fe3O4 NPs synthesized via a mild reduction method were conjugated with FA to generate FA-targeted Fe3O4 NPs. The specificity of FA-targeted Fe3O4 NPs to bind FA receptor was investigated in vitro by cellular uptake and cell MRI and in vivo by MRI of H460 tumors.

Results

The formed NPs displayed good biocompatibility and ultrahigh r 2 relaxivity (440.01/mM/s). The targeting effect of the NPs to H460 cells was confirmed by in vitro cellular uptake and cell MRI. H460 tumors showed a significant reduction in T2 signal intensity at 0.85 h, which then recovered and returned to control at 2.35 h.

Conclusions

The results indicate that the prepared FA-targeted Fe3O4 NPs have potential to be used as T2 negative contrast agents in targeted MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Artemov D, Mori N, Ravi R, Bhujwalla ZM (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63:2723–2727

    CAS  PubMed  Google Scholar 

  2. Zhang Z, Dharmakumar R, Mascheri N et al (2009) Comparison of superparamagnetic and ultrasmall superparamagnetic iron oxide cell labeling for tracking green fluorescent protein gene marker with negative and positive contrast magnetic resonance imaging. Mol Imaging 8:148–155

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang J, Xie J, Zhou X et al (2011) Ferritin enhances SPIO tracking of C6 rat glioma cells by MRI. Mol Imaging Biol 13:87–93

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arbab AS, Janic B, Haller J et al (2009) In vivo cellular imaging for translational medical research. Curr Med Imaging Rev 5:19–38

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589

    Article  CAS  PubMed  Google Scholar 

  7. Pan Y, Du X, Zhao F, Xu B (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41:2912–2942

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Z, Wang L, Chi X et al (2013) Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano 7:3287–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, He Y, Sun W et al (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35:3666–3677

    Article  CAS  PubMed  Google Scholar 

  10. Hyslop WB, Semelka RC (2005) Future directions in body magnetic resonance imaging. Top Magn Reson Imaging 16:3–14

    Article  PubMed  Google Scholar 

  11. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9:228–232

    Article  CAS  PubMed  Google Scholar 

  13. Rogers WJ, Basu P (2005) Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis 178:67–73

    Article  CAS  PubMed  Google Scholar 

  14. Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2:1596–1610

    Article  CAS  PubMed  Google Scholar 

  15. Berry CC, Wells S, Charles S et al (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:5405–5413

    Article  CAS  PubMed  Google Scholar 

  16. Kohler N, Sun C, Fichtenholtz A et al (2006) Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2:785–792

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Wang J, Xie D, Chen G (2008) Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing. Small 4:462–466

    Article  CAS  PubMed  Google Scholar 

  18. Namgung R, Singha K, Yu MK et al (2010) Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213

    Article  CAS  PubMed  Google Scholar 

  19. Toffoli G, Cernigoi C, Russo A et al (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74:193–198

    Article  CAS  PubMed  Google Scholar 

  20. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiol Clin Implications Cancer 73:2432–2443

    CAS  Google Scholar 

  21. Weitman SD, Lark RH, Coney LR et al (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401

    CAS  PubMed  Google Scholar 

  22. Cai H, An X, Cui J et al (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5:1722–1731

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Luo Y, Xu Y et al (2015) Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl Mater Interfaces 7:5420–5428

    Article  CAS  PubMed  Google Scholar 

  24. Hong J, Xu D, Yu J et al (2007) Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging. Nanotechnology 18:135608

    Article  PubMed  Google Scholar 

  25. Li J, Hu Y, Yang J et al (2015) Facile synthesis of folic acid-functionalized iron oxide nanoparticles with ultrahigh relaxivity for targeted tumor MR imaging. J Mater Chem B 3:5720–5730

    Article  CAS  Google Scholar 

  26. Liu H, Xu Y, Wen S et al (2013) Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chemistry 19:6409–6416

    Article  CAS  PubMed  Google Scholar 

  27. Hu D, Sheng Z, Fang S et al (2014) Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics 4:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cal PM, Frade RF, Chudasama V et al (2014) Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates. Chem Commun 50:5261–5263

    Article  CAS  Google Scholar 

  29. Kumar M, Singh G, Arora V et al (2012) Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomedicine 7:3503–3516

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li K, Shen M, Zheng L et al (2014) Magnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles. Nanoscale Res Lett 9:304–314

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cai H, Li K, Li J et al (2015) Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small 11:4584–4593

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Gao F, Jiang W et al (2015) Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 25:1–8

    Google Scholar 

  33. Li J, Zheng L, Cai H et al (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–8392

    Article  CAS  PubMed  Google Scholar 

  34. Cai H, Li K, Shen M et al (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22:15110–15120

    Article  CAS  Google Scholar 

  35. Kalber TL, Kamaly N, So PW et al (2011) A low molecular weight folate receptor targeted contrast agent for magnetic resonance tumor imaging. Mol Imaging Biol 13:653–662

    Article  PubMed  Google Scholar 

  36. Corot C, Robert P, Lancelot E et al (2008) Tumor imaging using P866, a high-relaxivity gadolinium chelate designed for folate receptor targeting. Magn Reson Med 60:1337–1346

    Article  CAS  PubMed  Google Scholar 

  37. Wang ZJ, Boddington S, Wendland M et al (2008) MR imaging of ovarian tumors using folate-receptor-targeted contrast agents. Pediatr Radiol 38:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang H, Zhang C, Shi X et al (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673

    Article  CAS  PubMed  Google Scholar 

  39. Lesniak W, Bielinska AU, Sun K et al (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130

    Article  CAS  PubMed  Google Scholar 

  40. Schlachter EK, Widmer HR, Bregy A et al (2011) Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int J Nanomedicine 6:1793–1800

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Z, Zhu J, Chen Y et al (2014) Folic acid modified superparamagnetic iron oxide nanocomposites for targeted hepatic carcinoma MR imaging. RSC Adv 4:7483–7490

    Article  CAS  Google Scholar 

  42. Li H, Yan K, Shang Y et al (2015) Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging. Acta Biomater 15:117–126

    Article  PubMed  Google Scholar 

  43. Jiang QL, Zheng SW, Hong RY et al (2014) Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl Surf Sci 307:224–233

    Article  CAS  Google Scholar 

  44. Birn H (2006) The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins. Am J Physiol Renal Physiol 291:F22–F36

    Article  CAS  PubMed  Google Scholar 

  45. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  46. Krais A, Wortmann L, Hermanns L et al (2014) Targeted uptake of folic acid-functionalized iron oxide nanoparticles by ovarian cancer cells in the presence but not in the absence of serum. Nanomedicine 10:1421–1431

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant number 81371623,81501518).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Shi or Guixiang Zhang.

Ethics declarations

Nude mice (4–5 weeks old) were purchased from the Shanghai Laboratory Animal Centre, and the animal studies were approved by Shanghai Jiao Tong University affiliated First People’s Hospital Committee on Use and Care of Animals and conducted in accordance with local humane animal care standard.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Zaixian Zhang and Yong Hu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Hu, Y., Yang, J. et al. Facile Synthesis of Folic Acid-Modified Iron Oxide Nanoparticles for Targeted MR Imaging in Pulmonary Tumor Xenografts. Mol Imaging Biol 18, 569–578 (2016). https://doi.org/10.1007/s11307-015-0918-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0918-5

Key words

Navigation