Skip to main content
Log in

[11C]acetate PET Imaging is not Always Associated with Increased Lipogenesis in Hepatocellular Carcinoma in Mice

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Altered metabolism, including increased glycolysis and de novo lipogenesis, is one of the hallmarks of cancer. Radiolabeled nutrients, including glucose and acetate, are extensively used for the detection of various tumors, including hepatocellular carcinomas (HCCs). High signal of [11C]acetate positron emission tomography (PET) in tumors is often considered to be associated with increased expression of fatty acid synthase (FASN) and increased de novo lipogenesis in tumor tissues. Defining a subset of tumors with increased [11C]acetate PET signal and thus increased lipogenesis was suggested to help select a group of patients, who may benefit from lipogenesis-targeting therapies.

Procedures

To investigate whether [11C]acetate PET imaging is truly associated with increased de novo lipogenesis along with hepatocarcinogenesis, we performed [11C]acetate PET imaging in wild-type mice as well as two mouse HCC models, induced by myrAKT/RasV12 (AKT/Ras) and PIK3CA1047R/c-Met (PI3K/Met) oncogene combinations. In addition, we analyzed FASN expression and de novo lipogenesis rate in these mouse liver tissues.

Results

We found that while HCCs induced by AKT/Ras co-expression showed high levels of [11C]acetate PET signal compared to normal liver, HCCs induced by PI3K/Met overexpression did not. Intriguingly, elevated FASN expression and increased de novo lipogenesis rate were observed in both AKT/Ras and PI3K/Met HCCs.

Conclusion

Altogether, our study suggests that [11C]acetate PET imaging can be a useful tool for imaging of a subset of HCCs. However, at molecular level, the increased [11C]acetate PET imaging is not always associated with increased FASN expression or de novo lipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. American Cancer Society (2012) Selected cancers. In: Cancer facts & figures. American Cancer Society, Atlanta, pp 14–15

    Google Scholar 

  3. Shurbaji MS, Kalbfleisch JH, Thurmond TS (1996) Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Human pathology 27:917–921

    Article  CAS  PubMed  Google Scholar 

  4. Alo PL, Visca P, Marci A et al (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77:474–482

    Article  CAS  PubMed  Google Scholar 

  5. Gansler TS, Hardman W 3rd, Hunt DA et al (1997) Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Human Pathol 28:686–692

    Article  CAS  Google Scholar 

  6. Takahiro T, Shinichi K, Toshimitsu S (2003) Expression of fatty acid synthase as a prognostic indicator in soft tissue sarcomas. Clin Canc Res 9:2204–2212

    CAS  Google Scholar 

  7. Visca P, Sebastiani V, Botti C et al (2004) Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticanc Res 24:4169–4173

    CAS  Google Scholar 

  8. Rossi S, Ou W, Tang D et al (2006) Gastrointestinal stromal tumours overexpress fatty acid synthase. J Pathol 209:369–375

    Article  CAS  PubMed  Google Scholar 

  9. Carvalho MA, Zecchin KG, Seguin F et al (2008) Fatty acid synthase inhibition with orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Intl J Canc 123:2557–2565

    Article  CAS  Google Scholar 

  10. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Canc 7:763–777

    Article  CAS  Google Scholar 

  11. Myers RB, Oelschlager DK, Weiss HL et al (2001) Fatty acid synthase: an early molecular marker of progression of prostatic adenocarcinoma to androgen independence. J Urol 165:1027–1032

    Article  CAS  PubMed  Google Scholar 

  12. Bull JH, Ellison G, Patel A et al (2001) Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br J Canc 84:1512–1519

    Article  CAS  Google Scholar 

  13. Rashid A, Pizer ES, Moga M et al (1997) Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 150:201–208

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Alo PL, Visca P, Trombetta G et al (1999) Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori 85:35–40

    CAS  PubMed  Google Scholar 

  15. Pizer ES, Jackisch C, Wood FD et al (1996) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56:2745–2747

    CAS  PubMed  Google Scholar 

  16. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075

    Article  CAS  PubMed  Google Scholar 

  17. Knowles LM, Axelrod F, Browne CD, Smith JW (2004) A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. J Biol Chem 279:30540–30545

    Article  CAS  PubMed  Google Scholar 

  18. Kridel SJ, Lowther WT, Pemble CW (2007) Fatty acid synthase inhibitors: new directions for oncology. Expert Opin Investig Drugs 16:1817–1829

    Article  CAS  PubMed  Google Scholar 

  19. Murata S, Yanagisawa K, Fukunaga K et al (2010) Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice. Canc Sci 101:1861–1865

    Article  CAS  Google Scholar 

  20. Migita T, Ruiz S, Fornari A et al (2009) Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Canc Inst 101:519–532

    Article  CAS  Google Scholar 

  21. Gao Y, Lin LP, Zhu CH et al (2006) Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. Canc Biol Ther 5:978–985

    Article  CAS  Google Scholar 

  22. Calvisi DF, Wang C, Ho C et al (2011) Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterol 140:1071–1083

    Article  CAS  Google Scholar 

  23. Na TY, Shin YK, Roh KJ et al (2009) Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatol 49:1122–1131

    Article  CAS  Google Scholar 

  24. Zhu X, Qin X, Fei M et al (2012) Combined phosphatase and tensin homolog (PTEN) loss and fatty acid synthase (FAS) overexpression worsens the prognosis of Chinese patients with hepatocellular carcinoma. Intl J Molec Sci 13:9980–9991

    Article  CAS  Google Scholar 

  25. Wang Q, Zhang W, Liu Q et al (2010) A mutant of hepatitis B virus X protein (HBxDelta127) promotes cell growth through a positive feedback loop involving 5-lipoxygenase and fatty acid synthase. Neoplasia 12:103–115

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yamashita T, Honda M, Takatori H et al (2009) Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol 50:100–110

    Article  CAS  PubMed  Google Scholar 

  27. Li C, Yang W, Zhang J et al (2014) SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Intl J Molec Sci 15:7124–7138

    Article  Google Scholar 

  28. Park JW, Kim JH, Kim SK et al (2008) A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 49:1912–1921

    Article  PubMed  Google Scholar 

  29. Trojan J, Schroeder O, Raedle J et al (1999) Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol 94:3314–3319

    Article  CAS  PubMed  Google Scholar 

  30. Talbot JN, Fartoux L, Balogova S et al (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51:1699–1706

    Article  PubMed  Google Scholar 

  31. Delbeke D, Pinson CW (2003) 11C-acetate: a new tracer for the evaluation of hepatocellular carcinoma. J Nucl Med 44:222–223

    PubMed  Google Scholar 

  32. Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221

    PubMed  Google Scholar 

  33. Ho CL, Chen S, Yeung DW, Cheng TK (2007) Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med 48:902–909

    Article  CAS  PubMed  Google Scholar 

  34. Larsson P, Arvidsson D, Bjornstedt M et al (2012) Adding 11C-acetate to 18F-FDG at PET examination has an incremental value in the diagnosis of hepatocellular carcinoma. Mol Imaging Radionucl Ther 21:6–12

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheung TT, Ho CL, Lo CM et al (2013) 11C-acetate and 18F-FDG PET/CT for clinical staging and selection of patients with hepatocellular carcinoma for liver transplantation on the basis of Milan criteria: surgeon’s perspective. J Nucl Med 54:192–200

    Article  CAS  PubMed  Google Scholar 

  36. Vavere AL, Kridel SJ, Wheeler FB, Lewis JS (2008) 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49:327–334

    Article  CAS  PubMed  Google Scholar 

  37. Brown M, Marshall DR, Sobel BE, Bergmann SR (1987) Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 76:687–696

    Article  CAS  PubMed  Google Scholar 

  38. Buxton DB, Schwaiger M, Nguyen A et al (1988) Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 63:628–634

    Article  CAS  PubMed  Google Scholar 

  39. Yoshimoto M, Waki A, Yonekura Y et al (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28:117–122

    Article  CAS  PubMed  Google Scholar 

  40. Schug Z, Peck B, Jones D et al (2014) Acetyl-coA synthetase 2 promotes acetate utilization and maintains cell growth under metabolic stress. Cancer Metab 2(Suppl 1):O9

    Article  PubMed Central  Google Scholar 

  41. Yoshii Y, Waki A, Furukawa T et al (2009) Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: implications for the mechanism of acetate PET. Nucl Med Biol 36:771–777

    Article  CAS  PubMed  Google Scholar 

  42. Yun M, Bang SH, Kim JW et al (2009) The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma. J Nucl Med 50:1222–1228

    Article  CAS  PubMed  Google Scholar 

  43. Ho C, Wang C, Mattu S et al (2012) AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways. Hepatol 55:833–845

    Article  CAS  Google Scholar 

  44. Tward AD, Jones KD, Yant S et al (2007) Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci USA 104:14771–14776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ponde DE, Dence CS, Oyama N et al (2007) 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging—in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48:420–428

    CAS  PubMed  Google Scholar 

  46. Chen X, Calvisi DF (2014) Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am J Pathol 184:912–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li L, Wang C, Calvisi DF et al (2013) SCD1 expression is dispensable for hepatocarcinogenesis induced by AKT and Ras oncogenes in mice. PLoS One 8:e75104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bederman IR, Foy S, Chandramouli V et al (2009) Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources. J Biol Chem 284:6101–6108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsieh CW, Millward CA, DeSantis D et al (2009) Reduced milk triglycerides in mice lacking phosphoenolpyruvate carboxykinase in mammary gland adipocytes and white adipose tissue contribute to the development of insulin resistance in pups. J Nutr 139:2257–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brunengraber DZ, McCabe BJ, Kasumov T et al (2003) Influence of diet on the modeling of adipose tissue triglycerides during growth. Am J Physiol Endocrinol Metab 285:E917–925

    Article  CAS  PubMed  Google Scholar 

  51. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    Article  CAS  PubMed  Google Scholar 

  52. Czernin J, Weber WA, Herschman HR (2006) Molecular imaging in the development of cancer therapeutics. Annu Rev Med 57:99–118

    Article  CAS  PubMed  Google Scholar 

  53. Lee SA, Ladu S, Evert M et al (2010) Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis. Hepatol 52:506–517

    Article  CAS  Google Scholar 

  54. Giordano S, Columbano A (2014) Met as a therapeutic target in HCC: facts and hopes. J Hepatol 60:442–452

    Article  CAS  PubMed  Google Scholar 

  55. Czernin J, Benz MR, Allen-Auerbach MS (2009) PET imaging of prostate cancer using 11C-acetate. PET Clinics 4:163–172

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salem N, Kuang Y, Corn D et al (2011) [(Methyl)1-(11)C]-acetate metabolism in hepatocellular carcinoma. Mol imaging Biol 13:140–151

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cheung TT, Chan SC, Ho CL et al (2011) Can positron emission tomography with the dual tracers [11C]acetate and [18F]fludeoxyglucose predict microvascular invasion in hepatocellular carcinoma? Liver Transplant 17:1218–1225

    Article  Google Scholar 

  58. Hwang KH, Choi DJ, Lee SY et al (2009) Evaluation of patients with hepatocellular carcinomas using [(11)C]acetate and [(18)F]FDG PET/CT: a preliminary study. Appl Radiat Isotop 67:1195–1198

    Article  CAS  Google Scholar 

  59. Hu S, Balakrishnan A, Bok RA et al (2011) 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14:131–142

    Article  CAS  PubMed  Google Scholar 

  60. Huynh H, Soo KC, Chow PK, Tran E (2007) Targeted inhibition of the extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) in the treatment of hepatocellular carcinoma. Mol Cancer Ther 6:138–146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mariia Yuneva for her thoughtful comments for the manuscript. We also thank Stephanie T. Murphy for her immense help on animal imaging. This work was supported in part by the University of California, San Francisco (UCSF) Radiology Seed Grant, UCSF Liver Center Pilot/Feasibility Grant (P30DK026743), National Institutes of Health/National Cancer Institute (NIH/NCI), and UCSF Helen Diller Family Comprehensive Cancer Center (P30CA082103) to Youngho Seo; NIH/NCI grant (R01CA136606) to Xin Chen; NIH (U24DK76174) to Case Western Reserve University Mouse Metabolic Phenotyping Center (MMPC); and the National Natural Science Foundation of China (Grant No. 81201553) to Lei Li.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Chen or Youngho Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Che, L., Wang, C. et al. [11C]acetate PET Imaging is not Always Associated with Increased Lipogenesis in Hepatocellular Carcinoma in Mice. Mol Imaging Biol 18, 360–367 (2016). https://doi.org/10.1007/s11307-015-0915-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0915-8

Key words

Navigation