Skip to main content
Log in

Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury.

Procedures

A population of rats underwent 30 min of renal ischemia (acute kidney injury, N = 6) or sham injury (N = 4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis.

Results

Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings.

Conclusions

Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ostermann M, Chang RW (2007) Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 35:1837–1843, quiz 1852

    Article  PubMed  Google Scholar 

  3. Kelly KJ, Molitoris BA (2000) Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol 20:4–19

    CAS  PubMed  Google Scholar 

  4. Kalantarinia K (2009) Novel imaging techniques in acute kidney injury. Curr Drug Targets 10:1184–1189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Andreucci M, Faga T, Pisani A et al (2014) Acute kidney injury by radiographic contrast media: pathogenesis and prevention. Biomed Res Int 2014:362725

    PubMed Central  PubMed  Google Scholar 

  6. Susantitaphong P, Eiam-Ong S (2014) Nonpharmacological strategies to prevent contrast-induced acute kidney injury. Biomed Res Int 2014:463608

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kogan PJK, Johnson KA, Feingold S et al (2011) Validation of dynamic contrast-enhanced ultrasound in rodent kidneys as an absolute quantitative method for measuring blood perfusion. Ultrasound Med Biol 37:900–9008

    Article  PubMed Central  PubMed  Google Scholar 

  8. Feingold S, Gessner R, Guracar IM, Dayton PA (2010) Quantitative volumetric perfusion mapping of the microvasculature using contrast ultrasound. Invest Radiol 45:669–674

    Article  PubMed  Google Scholar 

  9. McArthur C, Baxter GM (2012) Current and potential renal applications of contrast-enhanced ultrasound. Clin Radiol 67:909–922

    Article  CAS  PubMed  Google Scholar 

  10. Lassau N, Chapotot L, Benatsou B et al (2012) Standardization of dynamic contrast-enhanced ultrasound for the evaluation of antiangiogenic therapies: the French multicenter Support for Innovative and Expensive Techniques Study. Invest Radiol 47:711–716

    Article  CAS  PubMed  Google Scholar 

  11. Lassau N, Chami L, Benatsou B et al (2007) Dynamic contrast-enhanced ultrasonography (DCE-US) with quantification of tumor perfusion: a new diagnostic tool to evaluate the early effects of antiangiogenic treatment. Eur Radiol 17(Suppl 6):F89–98

    Article  PubMed  Google Scholar 

  12. Mahoney M, Sorace A, Warram J et al (2014) Volumetric contrast-enhanced ultrasound imaging of renal perfusion. J Ultrasound Med 33:1427–1437

    Article  PubMed Central  PubMed  Google Scholar 

  13. Saini R, Hoyt K (2014) Recent developments in dynamic contrast-enhanced ultrasound imaging of tumor angiogenesis. Imaging Med 6:41–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hoyt K, Mahoney M, Sorace A (2014) Four-dimensional molecular ultrasound imaging of tumor angiogenesis in a preclinical animal model of prostate cancer. Proc IEEE Ultrason Sympos 1160–1163

  15. Saini R, Sorace AG, Warram JM et al (2013) An animal model allowing controlled receptor expression for molecular ultrasound imaging. Ultrasound Med Biol 39:172–180

    Article  PubMed Central  PubMed  Google Scholar 

  16. Knowles JA, Heath CH, Saini R et al (2012) Molecular targeting of ultrasonographic contrast agent for detection of head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 138:662–668

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sorace AG, Saini R, Mahoney M, Hoyt K (2012) Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med 31:1543–1550

    PubMed Central  PubMed  Google Scholar 

  18. Warram JM, Sorace AG, Saini R et al (2011) A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med 30:921–931

    PubMed Central  PubMed  Google Scholar 

  19. Lindner JR, Song J, Christiansen J et al (2001) Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104:2107–2112

    Article  CAS  PubMed  Google Scholar 

  20. Boesen EI, Crislip GR, Sullivan JC (2012) Use of ultrasound to assess renal reperfusion and P-selectin expression following unilateral renal ischemia. Am J Physiol Renal Physiol 303:F1333–1340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Andonian S, Coulthard T, Smith AD et al (2009) Real-time quantitation of renal ischemia using targeted microbubbles: in-vivo measurement of P-selectin expression. J Endourol 23:373–378

    Article  PubMed  Google Scholar 

  22. Klibanov AL (2009) Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput 47:875–882

    Article  PubMed  Google Scholar 

  23. Warram JM, Sorace AG, Mahoney M et al (2014) Biodistribution of P-selectin targeted microbubbles. J Drug Target 22:387–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Roberts J, Chen B, Curtis LM et al (2007) Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury. Am J Physiol Renal Physiol 293:F1408–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Frinking PJ, Bouakaz A, Kirkhorn J et al (2000) Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol 26:965–975

    Article  CAS  PubMed  Google Scholar 

  26. Sorace A, Hoyt K (2014) Imaging the microvascular response to ultrasound-stimulated therapy in a preclinical animal model of breast cancer. Proc IEEE Ultrasonics Sympos 2145–2148

  27. Yusuf GT, Sellars ME, Huang DY et al (2014) Cortical necrosis secondary to trauma in a child: contrast-enhanced ultrasound comparable to magnetic resonance imaging. Pediatr Radiol 44:484–487

    Article  PubMed  Google Scholar 

  28. Schneider AG, Goodwin MD, Schelleman A et al (2014) Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care 18:653

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schneider AG, Schelleman A, Goodwin MD et al (2015) Contrast-enhanced ultrasound evaluation of the renal microcirculation response to terlipressin in hepato-renal syndrome: a preliminary report. Ren Fail 37:175–179

    Article  PubMed  Google Scholar 

  30. Fröhlich E, Muller R, Cui XW et al (2015) Dynamic contrast-enhanced ultrasound for quantification of tissue perfusion. J Ultrasound Med 34:179–196

    Article  PubMed  Google Scholar 

  31. Göcze I, Wohlgemuth WA, Schlitt HJ, Jung EM (2014) Contrast-enhanced ultrasonography for bedside imaging in subclinical acute kidney injury. Intensive Care Med 40:431

    Article  PubMed  Google Scholar 

  32. Ferrante EA, Pickard JE, Rychak J et al (2009) Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release 140:100–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bettinger T, Bussat P, Tardy I et al (2012) Ultrasound molecular imaging contrast agent binding to both E- and P-selectin in different species. Invest Radiol 47:516–523

    Article  CAS  PubMed  Google Scholar 

  34. Willmann JK, Lutz AM, Paulmurugan R et al (2008) Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology 248:936–944

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hoyt K, Sorace A, Saini R (2012) Quantitative mapping of tumor vascularity using volumetric contrast-enhanced ultrasound. Invest Radiol 47:167–174

    PubMed Central  PubMed  Google Scholar 

  36. Hoyt K, Sorace A, Saini R (2012) Volumetric contrast-enhanced ultrasound imaging to assess early response to apoptosis-inducing anti-death receptor 5 antibody therapy in a breast cancer animal model. J Ultrasound Med 31:1759–1766

    PubMed Central  PubMed  Google Scholar 

  37. Pollard RE, Dayton PA, Watson KD et al (2009) Motion corrected cadence CPS ultrasound for quantifying response to vasoactive drugs in a rat kidney model. Urology 74:675–681

    Article  PubMed Central  PubMed  Google Scholar 

  38. Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24:3263–3265

    Article  CAS  PubMed  Google Scholar 

  39. Waikar SS, Betensky RA, Emerson SC, Bonventre JV (2012) Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol 23:13–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research project was supported by NIH grant numbers P30DK079337 and K25EB017222. The authors would like to thank the UAB-UCSD O’Brien Core Center for Acute Injury Research for performing all rat surgeries and the UAB Center for Metabolic Bone Disease for IHC protocol development and processing of renal tissue samples.

Conflict of Interest Statement

The authors confirm that this article content has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Hoyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyt, K., Warram, J.M., Wang, D. et al. Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury. Mol Imaging Biol 17, 786–792 (2015). https://doi.org/10.1007/s11307-015-0860-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0860-6

Key words

Navigation