Skip to main content

Advertisement

Log in

A Hyaluronic Acid-Conjugated Gadolinium Hepatocyte-Specific T1 Contrast Agent for Liver Magnetic Resonance Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In this study, we synthesized hyaluronic acid-conjugated gadolinium (HA-diethylene triamine pentaacetic acid (DTPA)-Gd) and evaluated as hepatocyte-specific magnetic resonance imaging (MRI) contrast agent for the diagnosis of hepatic metastasis.

Procedures

We conducted Fourier transform (FT)-IR analysis to determine the conjugation of HA and DTPA and performed cell viability assays using NIH3T3 and FL83B cell lines. We also conducted T1-weighted MRI of HA-DTPA-Gd and gadoxetic acid to compare the paramagnetic properties of both.

Results

HA-DTPA-Gd had a higher efficiency in liver MRI compared with the commercially available liver-specific contrast agent (p < 0.001). HA-DTPA-Gd, which possessed a higher T1 relaxivity, showed excellent capability for the diagnosis of hepatic metastasis through an in vivo MRI study in comparison with gadoxetic acid (p < 0.001).

Conclusion

Based on this study, we believe that HA-DTPA-Gd has promising potential for use as a contrast agent for liver MRI of hepatic metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. Ca Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Bipat S, Leeuwen MS, Comans EF et al (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology 237:123–131

    Article  PubMed  Google Scholar 

  3. Niekel MC, Bipat S, Stoker J (2010) Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 257:674–684

    Article  PubMed  Google Scholar 

  4. Lafaro KJ, Roumanis P, Demirjian AN et al (2013) Gd-EOB-DTPA-enhanced MRI for detection of liver metastases from colorectal cancer: a surgeon’s perspective! Int J Hepatol 2013:7

    Google Scholar 

  5. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  PubMed  Google Scholar 

  6. Semelka RC, Helmberger TK (2001) Contrast agents for MR imaging of the liver. Radiology 218:27–38

    Article  CAS  PubMed  Google Scholar 

  7. Bellin MF, Vasile M, Morel-Precetti S (2003) Currently used non-specific extracellular MR contrast media. Eur Radiol 13:2688–2698

    Article  CAS  PubMed  Google Scholar 

  8. Huppertz A, Balzer T, Blakeborough A et al (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230:266–275

    Article  PubMed  Google Scholar 

  9. Seale MK, Catalano OA, Saini S et al (2009) Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics 29:1725–1748

    Article  PubMed  Google Scholar 

  10. Shimada K, Isoda H, Hirokawa Y et al (2010) Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases. Eur Radiol 20:2690–2698

    Article  PubMed  Google Scholar 

  11. Reimer P, Schneider G, Schima W (2004) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14:559–578

    Article  PubMed  Google Scholar 

  12. Dohr O, Hofmeister R, Treher M, Schweinfurth H (2007) Preclinical safety evaluation of Gd-EOB-DTPA (Primovist). Invest Radiol 42:830–841

    Article  PubMed  Google Scholar 

  13. Weinmann HJ, Schuhmann-Giampieri G, Schmitt-Willich H et al (1991) A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn Reson Med 22:233–237

    Article  CAS  PubMed  Google Scholar 

  14. Hammerstingl R, Huppertz A, Breuer J, European EOB study group (2008) Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral CT for a therapeutic strategy: comparison with intraoperative and histopathologic findings in focal liver lesions. Eur Radiol 18:457–467

    Article  PubMed  Google Scholar 

  15. Kim KS, Hur W, Park SJ et al (2010) Bioimaging for targeted delivery of hyaluronic acid derivatives to the livers in cirrhotic mice using quantum dots. ACS Nano 4:3005–3014

    Article  CAS  PubMed  Google Scholar 

  16. Zhou B, Weigel JA, Fauss L, Weigel PH (2000) Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem 275:37733–37741

    Article  CAS  PubMed  Google Scholar 

  17. Satoh T, Ichida T, Matsuda Y et al (2000) Interaction between hyaluronan and CD44 in the development of dimethylnitrosamine-induced liver cirrhosis. J Gastroenterol Hepatol 15:402–411

    Article  CAS  PubMed  Google Scholar 

  18. Cruickshank SM, Southgate J, Wyatt JI et al (1999) Expression of CD44 on bile ducts in primary sclerosing cholangitis and primary biliary cirrhosis. J Clin Pathol 52:730–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fraser JR, Laurent TC, Pertoft H, Baxter E (1981) Plasma clearance, tissue distribution and metabolism of hyaluronic acid injected intravenously in the rabbit. Biochem J 200:415–424

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ashwinkumar N, Maya S, Jayakumar R (2014) Redox-responsive cystamine conjugated chitin-hyaluronic acid composite nanogels. RSC Adv 4:49547–49555

    Article  CAS  Google Scholar 

  21. Saravanakumar G, Deepagan VG, Jayakumar R, Park JH (2014) Hyaluronic acid-based conjugates for tumor-targeted drug delivery and imaging. J Biomed Nanotechnol 10:17–31

    Article  CAS  PubMed  Google Scholar 

  22. Cho HJ, Yoon HY, Koo H (2012) Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J Control Release 162:111–118

    Article  CAS  PubMed  Google Scholar 

  23. Li J, He Y, Sun W et al (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35:3666–3677

    Article  CAS  PubMed  Google Scholar 

  24. Park JH, Cho HJ, Yoon HY et al (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 174:98–108

    Article  CAS  PubMed  Google Scholar 

  25. Yim H, Yang SG, Jeon YS et al (2011) The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI. Biomaterials 32:5187–5194

    Article  CAS  PubMed  Google Scholar 

  26. Buffa R, Betak J, Kettou S et al (2011) A novel DTPA cross-linking of hyaluronic acid metal complexation thereof. Carbohydr Res 346:1909–1915

    Article  CAS  PubMed  Google Scholar 

  27. Heijstek MW, Kranenburg O, Rinkes B (2005) Mouse models of colorectal cancer and liver metastases. Dig Surg 22:16–25

    Article  CAS  PubMed  Google Scholar 

  28. Pierre VC, Botta M, Raymond KN (2005) Dendrimeric gadolinium chelate with fast water exchange and high relaxivity at high magnetic field strength. J Am Chem Soc 127:504–505

    Article  CAS  PubMed  Google Scholar 

  29. Caravan P, Astashkin AV, Raitsimring AM (2003) The gadolinium(III)-water hydrogen distance in MRI contrast agents. Inorg Chem 42:3972–3974

    Article  CAS  PubMed  Google Scholar 

  30. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    Article  CAS  PubMed  Google Scholar 

  31. Werner EJ, Datta A, Jocher CJ, Raymond KN (2008) High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem 47:8568–8580

    Article  CAS  Google Scholar 

  32. Isaji S, Kawarada Y (2002) Changes in serum hyaluronic acid levels and expression of CD44 and CD44 mRNA in hepatic sinusoidal endothelial cells after major hepatectomy in cirrhotic rats. World J Surg 26:694–699

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2011–0023317)

Conflict of Interest

The authors declare that they have no conflict of interest.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yeon Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, M., Thomas, R.G., Heo, Su. et al. A Hyaluronic Acid-Conjugated Gadolinium Hepatocyte-Specific T1 Contrast Agent for Liver Magnetic Resonance Imaging. Mol Imaging Biol 17, 497–503 (2015). https://doi.org/10.1007/s11307-014-0819-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0819-z

Key words

Navigation