Skip to main content
Log in

Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss: Relationship to Sigma-1 Receptor Occupancy

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Rapid eye movement (REM) sleep deprivation (SD) decreases cerebral sigma-1 receptor expression and causes cognitive deficits. Sigma-1 agonists are cognitive enhancers. Here, we investigate the effect of cutamesine treatment in the REM SD model.

Procedures

Sigma-1 receptor occupancy (RO) in the rat brain by cutamesine was determined using 1-[2-(3,4-dimethoxyphenethyl)]-4-(3-phenylpropyl)piperazine ([11C]SA4503) and positron emission tomography (PET), and tissue cutamesine levels were measured by ultra performance liquid chromatography (UPLC)-MS. RO was calculated from a Cunningham-Lassen plot, based on the total distribution volume of [11C]SA4503 determined by Logan graphical analysis. Cognitive performance was assessed using the passive avoidance (PA) test.

Results

Cutamesine at a dose of 1.0 mg/kg reversed REM SD-induced cognitive deficit and occupied 92 % of the sigma-1 receptor population. A lower dose (0.3 mg/kg) occupied 88 % of the receptors but did not significantly improve cognition.

Conclusion

The anti-amnesic effect of cutamesine in this animal model may be related to longer exposure at a higher dose and/or drug binding to secondary targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  2. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Su TP, Hayashi T, Maurice T et al (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31:557–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Maurice T, Hiramatsu M, Kameyama T et al (1994) Behavioral evidence for a modulating role of sigma ligands in memory processes. II. Reversion of carbon monoxide-induced amnesia. Brain Res 647:57–64

    Article  CAS  PubMed  Google Scholar 

  5. Maurice T, Roman FJ, Su TP et al (1996) Beneficial effects of sigma agonists on the age-related learning impairment in the senescence-accelerated mouse (SAM). Brain Res 733:219–230

    Article  CAS  PubMed  Google Scholar 

  6. Maurice T, Hiramatsu M, Itoh J et al (1994) Behavioral evidence for a modulating role of sigma ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Res 647:44–56

    Article  CAS  PubMed  Google Scholar 

  7. Maurice T, Privat A (1997) SA4503, a novel cognitive enhancer with sigma1 receptor agonist properties, facilitates NMDA-receptor-dependent learning in mice. Eur J Pharmacol 328:9–18

    Article  CAS  PubMed  Google Scholar 

  8. Zou LB, Yamada K, Nabeshima T (1998) Sigma receptor ligands (+)-SKF10,047 and SA4503 improve dizocilpine-induced spatial memory deficits in rats. Eur J Pharmacol 355:1–10

    Article  CAS  PubMed  Google Scholar 

  9. Maurice T, Phan VL, Privat A (2001) The anti-amnesic effects of sigma1 (sigma1) receptor agonists confirmed by in vivo antisense strategy in the mouse. Brain Res 898:113–121

    Article  CAS  PubMed  Google Scholar 

  10. Noda A, Noda Y, Kamei H et al (2001) Phencyclidine impairs latent learning in mice: interaction between glutamatergic systems and sigma(1) receptors. Neuropsychopharmacology 24:451–460

    Article  CAS  PubMed  Google Scholar 

  11. Hashimoto K, Fujita Y, Iyo M (2007) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors. Neuropsychopharmacology 32:514–521

    Article  CAS  PubMed  Google Scholar 

  12. Senda T, Matsuno K, Okamoto K et al (1996) Ameliorating effect of SA4503, a novel sigma 1 receptor agonist, on memory impairments induced by cholinergic dysfunction in rats. Eur J Pharmacol 315:1–10

    Article  CAS  PubMed  Google Scholar 

  13. Matsuno K, Senda T, Kobayashi T et al (1997) SA4503, a novel cognitive enhancer, with sigma-1 receptor agonistic properties. Behav Brain Res 83:221–224

    Article  CAS  PubMed  Google Scholar 

  14. Zvejniece L, Vavers E, Svalbe B et al (2014) The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors. Br J Pharmacol 171:761–771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Senda T, Matsuno K, Kobayashi T et al (1998) Ameliorative effect of SA4503, a novel cognitive enhancer, on the basal forebrain lesion-induced impairment of the spatial learning performance in rats. Pharmacol Biochem Behav 59:129–134

    Article  CAS  PubMed  Google Scholar 

  16. Antonini V, Prezzavento O, Coradazzi M et al (2009) Anti-amnesic properties of (+/−)-PPCC, a novel sigma receptor ligand, on cognitive dysfunction induced by selective cholinergic lesion in rats. J Neurochem 109:744–754

    Article  CAS  PubMed  Google Scholar 

  17. Antonini V, Marrazzo A, Kleiner G et al (2011) Anti-amnesic and neuroprotective actions of the sigma-1 receptor agonist (−)-MR22 in rats with selective cholinergic lesion and amyloid infusion. J Alzheimers Dis 24:569–586

    CAS  PubMed  Google Scholar 

  18. Maurice T, Su TP, Privat A (1998) Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 83:413–428

    Article  CAS  PubMed  Google Scholar 

  19. Behensky AA, Yasny IE, Shuster AM et al (2013) Stimulation of sigma receptors with afobazole blocks activation of microglia and reduces toxicity caused by amyloid-beta25-35. J Pharmacol Exp Ther 347:458–467

    Article  CAS  PubMed  Google Scholar 

  20. Meunier J, Demeilliers B, Celerier A et al (2006) Compensatory effect by sigma1 (sigma1) receptor stimulation during alcohol withdrawal in mice performing an object recognition task. Behav Brain Res 166:166–176

    Article  CAS  PubMed  Google Scholar 

  21. Ishiwata K, Oda K, Sakata M et al (2006) A feasibility study of [11C]SA4503-PET for evaluating sigma 1 receptor occupancy by neuroleptics: the binding of haloperidol to sigma 1 and dopamine D 2-like receptors. Ann Nucl Med 20:569–573

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa M, Ishiwata K, Ishii K et al (2007) High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503. Biol Psychiatry 62:878–883

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa M, Sakata M, Ishii K et al (2009) High occupancy of sigma1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503. Int J Neuropsychopharmacol 12:1127–1131

    Article  CAS  PubMed  Google Scholar 

  24. Ramakrishnan NK, Visser AK, Schepers M et al (2014) Dose-dependent sigma-1 receptor occupancy by donepezil in rat brain can be assessed with 11C-SA4503 and microPET. Psychopharmacology 231:3997–4006

    Article  CAS  PubMed  Google Scholar 

  25. Palchykova S, Winsky-Sommerer R, Meerlo P et al (2006) Sleep deprivation impairs object recognition in mice. Neurobiol Learn Mem 85:263–271

    Article  PubMed  Google Scholar 

  26. Hagewoud R, Havekes R, Novati A et al (2010) Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J Sleep Res 19:280–288

    Article  PubMed  Google Scholar 

  27. Xu ZQ, Gao CY, Fang CQ et al (2010) The mechanism and characterization of learning and memory impairment in sleep-deprived mice. Cell Biochem Biophys 58:137–140

    Article  CAS  PubMed  Google Scholar 

  28. Aleisa AM, Alzoubi KH, Alkadhi KA (2011) Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci Lett 499:28–31

    Article  CAS  PubMed  Google Scholar 

  29. Esumi LA, Palma BD, Gomes VL et al (2011) Inflammatory markers are associated with inhibitory avoidance memory deficit induced by sleep deprivation in rats. Behav Brain Res 221:7–12

    Article  CAS  PubMed  Google Scholar 

  30. Colavito V, Fabene PF, Grassi-Zucconi G et al (2013) Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 7:106

    Article  PubMed Central  PubMed  Google Scholar 

  31. Naidoo N (2009) Cellular stress/the unfolded protein response: relevance to sleep and sleep disorders. Sleep Med Rev 13:195–204

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rothman SM, Herdener N, Frankola KA et al (2013) Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Abeta and pTau in a mouse model of Alzheimer’s disease. Brain Res 1529:200–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ramakrishnan N, Marosi K, Nyakas CJ, et al. (2014) Altered sigma-1 receptor expression in two animal models of cognitive impairment. Mol Imaging Biol (in press)

  34. Kawamura K, Elsinga PH, Kobayashi T et al (2003) Synthesis and evaluation of (11)C- and (18)F-labeled 1-[2-(4-alkoxy-3-methoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazines as sigma receptor ligands for positron emission tomography studies. Nucl Med Biol 30:273–284

    Article  CAS  PubMed  Google Scholar 

  35. Schweinhardt P, Fransson P, Olson L et al (2003) A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 129:105–113

    Article  PubMed  Google Scholar 

  36. Julien-Dolbec C, Tropres I, Montigon O et al (2002) Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain. Br J Anaesth 89:287–293

    Article  CAS  PubMed  Google Scholar 

  37. Cunningham VJ, Rabiner EA, Slifstein M et al (2010) Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab 30:46–50

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lassen NA, Bartenstein PA, Lammertsma AA et al (1995) Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab 15:152–165

    Article  CAS  PubMed  Google Scholar 

  39. Spira AP, Gamaldo AA, An Y et al (2013) Self-reported sleep and beta-amyloid deposition in community-dwelling older adults. JAMA Neurol 70:1537–1543

    PubMed Central  PubMed  Google Scholar 

  40. Matsuno K, Mita S (1998) SA4503: a novel sigma-1 receptor agonist. Cns Drug Rev 4:1

    Article  CAS  Google Scholar 

  41. Ramakrishnan N, Reddy VP, Proost JH et al (2012) Population pharmacokinetics of cutamesine in rats using NONMEM, 11C-SA4503, and microPET. Eur J Nucl Med Mol Imaging 39:S301–S302

    Google Scholar 

  42. Lever JR, Miller DK, Fergason-Cantrell EA et al (2014) Relationship between cerebral sigma-1 receptor occupancy and attenuation of cocaine’s motor stimulatory effects in mice by PD144418. J Pharmacol Exp Ther 351:153–163

    Article  PubMed  Google Scholar 

  43. Matsuno K, Nakazawa M, Okamoto K et al (1996) Binding properties of SA4503, a novel and selective sigma 1 receptor agonist. Eur J Pharmacol 306:271–279

    Article  CAS  PubMed  Google Scholar 

  44. Lever JR, Gustafson JL, Xu R et al (2006) Sigma1 and sigma2 receptor binding affinity and selectivity of SA4503 and fluoroethyl SA4503. Synapse 59:350–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

During the period of this research, NKR was supported by university funding (Ubbo Emmius Bursary Position).

Conflict of Interest

No conflict of interest concerning this paper can be reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aren van Waarde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, N.K., Schepers, M., Luurtsema, G. et al. Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss: Relationship to Sigma-1 Receptor Occupancy. Mol Imaging Biol 17, 364–372 (2015). https://doi.org/10.1007/s11307-014-0808-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0808-2

Key words

Navigation