Skip to main content

Advertisement

Log in

Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We tested whether positron emission tomography (PET) with the caspase-3-targeted isatin analog [18F]WC-4-116 could image caspase-3 activation in response to an apoptosis-inducing anticancer therapy.

Procedures

[18F]WC-4-116 uptake was determined in etoposide-treated EL4 cells. Biodistribution studies with [18F]WC-4-116 and [18F]ICMT-18, a non-caspase-3-targeted tracer, as well as [18F]WC-4-116 microPET imaging assessed responses in Colo205 tumor-bearing mice treated with death receptor 5 (DR5)-targeted agonist antibodies. Immunohistochemical staining and enzyme assays confirmed caspase-3 activation. Two-way analysis of variance or Student’s t test assessed for treatment-related changes in tracer uptake.

Results

[18F]WC-4-116 increased 8 ± 2 fold in etoposide-treated cells. The [18F]WC-4-116 % ID/g also increased significantly in tumors with high caspase-3 enzyme activity (p < 0.05). [18F]ICMT-18 tumor uptake did not differ in tumors with high or low caspase-3 enzyme activity.

Conclusions

[18F]WC-4-116 uptake in vivo reflects increased caspase-3 activation and may be useful for detecting caspase-3-mediated apoptosis treatment responses in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmitt CA (2003) Senescence, apoptosis and therapy—cutting the lifelines of cancer. Nat Rev Cancer 3:286–295

    Article  CAS  PubMed  Google Scholar 

  2. Faber AC, Ebi H, Costa C, Engelman JA (2012) Apoptosis in targeted therapy responses: the role of BIM. Adv Pharmacol 65:519–542

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan-Lefko PJ, Graves JD, Zoog SJ et al (2010) Conatumumab, a fully human agonist antibody to death receptor 5, induces apoptosis via caspase activation in multiple tumor types. Cancer Biol Ther 9:618–631

    Article  CAS  PubMed  Google Scholar 

  4. Forero-Torres A, Shah J, Wood T et al (2010) Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 25:13–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Vaillant F, Merino D, Lee L et al (2013) Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell 24:120–129

    Article  CAS  PubMed  Google Scholar 

  6. Brinkmann K, Hombach A, Seeger JM et al (2013) Second mitochondria-derived activator of caspase mimetic (SMAC) potentiates tumor susceptibility toward natural killer cell-mediated killing. Leuk Lymphoma 55(3):645–651

    Article  PubMed  Google Scholar 

  7. Allensworth JL, Sauer SJ, Lyerly HK et al (2013) Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism. Breast Cancer Res Treat 137:359–371

    Article  CAS  PubMed  Google Scholar 

  8. Ardecky RJ, Welsh K, Finlay D et al (2013) Design, synthesis and evaluation of inhibitor of apoptosis protein (IAP) antagonists that are highly selective for the BIR2 domain of XIAP. Bioorg Med Chem Lett 23:4253–4257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cai Q, Sun H, Peng Y et al (2011) A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem 54:2714–2726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Belhocine TZ, Blankenberg FG (2005) 99mTc-Annexin A5 uptake and imaging to monitor chemosensitivity. Methods Mol Med 111:363–380

    CAS  PubMed  Google Scholar 

  11. Yagle KJ, Eary JF, Tait JF et al (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666

    CAS  PubMed  Google Scholar 

  12. Blankenberg FG, Kalinyak J, Liu L et al (2006) 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody. Eur J Nucl Med Mol Imaging 33:566–574

    Article  CAS  PubMed  Google Scholar 

  13. Madar I, Ravert H, Nelkin B et al (2007) Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur J Nucl Med Mol Imaging 34:2057–2065

    Article  CAS  PubMed  Google Scholar 

  14. Cohen A, Shirvan A, Levin G et al (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res 19(5):625–637

    Article  CAS  PubMed  Google Scholar 

  15. Aloya R, Shirvan A, Grimberg H et al (2006) Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11:2089–2101

    Article  PubMed Central  PubMed  Google Scholar 

  16. Cohen A, Ziv I, Aloya T et al (2007) Monitoring of chemotherapy-induced cell death in melanoma tumors by N, N'-Didansyl-l-cystine. Technol Cancer Res Treat 6:221–234

    Article  CAS  PubMed  Google Scholar 

  17. Chen DL, Zhou D, Chu W et al (2012) Radiolabeled isatin binding to caspase-3 activation induced by anti-Fas antibody. Nucl Med Biol 39:137–144

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chen DL, Zhou D, Chu W et al (2009) Comparison of radiolabeled isatin analogs for imaging apoptosis with positron emission tomography. Nucl Med Biol 36:651–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chu W, Rothfuss J, Zhou D, Mach RH (2011) Synthesis and evaluation of isatin analogs as caspase-3 inhibitors: introduction of a hydrophilic group increases potency in a whole cell assay. Bioorg Med Chem Lett 21:2192–2197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nguyen QD, Smith G, Glaser M et al (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci U S A 106:16375–16380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhou D, Chu W, Rothfuss J et al (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16:5041–5046

    Article  CAS  PubMed  Google Scholar 

  22. Faust A, Wagner S, Law MP et al (2007) The nonpeptidyl caspase binding radioligand (S)-1-(4-(2-[18F]Fluoroethoxy)-benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin ([18F]CbR) as potential positron emission tomography-compatible apoptosis imaging agent. Q J Nucl Med Mol Imaging 51:67–73

    CAS  PubMed  Google Scholar 

  23. Limpachayaporn P, Wagner S, Kopka K et al (2013) Synthesis, (18)F-radiolabeling, and in vivo biodistribution studies of N-fluorohydroxybutyl isatin sulfonamides using positron emission tomography. J Med Chem 56:4509–4520

    Article  CAS  PubMed  Google Scholar 

  24. Smith G, Glaser M, Perumal M et al (2008) Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide. J Med Chem 51:8057–8067

    Article  CAS  PubMed  Google Scholar 

  25. Zhou D, Lee H, Rothfuss JM et al (2009) Design and synthesis of 2-amino-4-methylpyridine analogues as inhibitors for inducible nitric oxide synthase and in vivo evaluation of [18F]6-(2-fluoropropyl)-4-methyl-pyridin-2-amine as a potential PET tracer for inducible nitric oxide synthase. J Med Chem 52:2443–2453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nguyen QD, Lavdas I, Gubbins J et al (2013) Temporal and spatial evolution of therapy-induced tumor apoptosis detected by caspase-3-selective molecular imaging. Clin Cancer Res 19(14):3914–3924

    Article  CAS  PubMed  Google Scholar 

  27. Zhou D, Chu W, Chen DL et al (2009) [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org Biomol Chem 7:1337–1348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chu W, Zhang J, Zeng C et al (2005) N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. J Med Chem 48:7637–7647

    Article  CAS  PubMed  Google Scholar 

  29. Al-Ejeh F, Darby JM, Tsopelas C et al (2009) APOMAB, a La-specific monoclonal antibody, detects the apoptotic tumor response to life-prolonging and DNA-damaging chemotherapy. PLoS ONE 4:e4558

    Article  PubMed Central  PubMed  Google Scholar 

  30. Li J, Knee DA, Wang Y et al (2008) LBY135, a novel anti-DR5 agonistic antibody induces tumor cell-specific cytotoxic activity in human colon tumor cell lines and xenografts. Drug Dev Res 69:69–82

    Article  CAS  Google Scholar 

  31. Kumar S (2004) Measurement of caspase activity in cells undergoing apoptosis. In: Brady HJM (ed) Apoptosis methods and protocols. Humana Press, Inc., Totowa, pp 19–30

    Chapter  Google Scholar 

  32. Chu W, Rothfuss J, d'Avignon A et al (2007) Isatin sulfonamide analogs containing a Michael addition acceptor: a new class of caspase 3/7 inhibitors. J Med Chem 50:3751–3755

    Article  CAS  PubMed  Google Scholar 

  33. Witney TH, Fortt RR, Aboagye EO (2014) Preclinical assessment of carboplatin treatment efficacy in lung cancer by 18F-ICMT-11-positron emission tomography. PLoS ONE 9:e91694

    Article  PubMed Central  PubMed  Google Scholar 

  34. Challapalli A, Kenny LM, Hallett WA et al (2013) 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med 54:1551–1556

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Washington University School of Medicine Cyclotron Facility for isotope production, Nicole Fettig, Amanda Klaas, Margaret Morris, Lori Strong, and Ann Stroncek of the Small Animal Imaging Facility for performing the scans, Katherine Spayd for manuscript editing, and Novartis for providing the DR5 targeted antibody and tumor cells as gifts. Amgen provided reagents and funding for imaging M413-treated mice. NIH K08 EB006702 (PI: DLC), the Damon Runyon Clinical Investigator Award (PI: DLC) and NIH R33 CA121952 (PI: RHM) also provided support for these studies.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine L. Chen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D.L., Engle, J.T., Griffin, E.A. et al. Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer. Mol Imaging Biol 17, 384–393 (2015). https://doi.org/10.1007/s11307-014-0802-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0802-8

Key words

Navigation