Skip to main content
Log in

Reproducibility and Reliability of Anti-3-[18F]FACBC Uptake Measurements in Background Structures and Malignant Lesions on Follow-Up PET-CT in Prostate Carcinoma: an Exploratory Analysis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to examine the reproducibility of anti-1-amino-3-[18F]fluorocyclobutane-1-carboxylic acid (anti-3-[18F]FACBC) quantitative measurements in key background structures and untreated malignant lesions.

Procedures

Retrospective review of 14 patients who underwent follow-up anti-3-[18F]FACBC positron emission tomography-X-ray computed tomography (PET-CT) for prostate carcinoma recurrence. Standard uptake values (SUV) were measured in both original and follow-up scans in key background structures and untreated malignant lesions. Absolute and percent mean difference in SUV between scans and interclass correlation coefficients (ICC) were also computed.

Results

Mean (±SD, range) scan interval was 17.4 months (±7.1, 4–29). %Mean difference in SUVmean was <20 % in background structures with low absolute differences. ICCs were >0.6 except for early-phase blood pool (ICC = 0.4). SUVmax in malignant lesions without interim therapy increased or remained stable over time.

Conclusions

Despite variable time interval between scans, FACBC PET-CT demonstrates acceptable reproducibility in key background structures. Untreated malignant lesions showed stable or increased uptake over time. A formal test-retest study is planned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jager PL, Vaalburg W, Pruim J et al (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–445

    CAS  PubMed  Google Scholar 

  2. Shoup TM, Olson J, Hoffman JM et al (1999) Synthesis and evaluation of [18F] 1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338

    CAS  PubMed  Google Scholar 

  3. Schuster DM, Nye JA, Nieh PT et al (2009) Initial experience with the radiotracer anti-1-amino-3-[18F]fluorocyclobutane-1-carboxylic acid (anti-[18F]FACBC) with PET in renal carcinoma. Mol Imaging Biol 11:434–438

    Article  PubMed  Google Scholar 

  4. Schuster DM, Savir-Baruch B, Nieh PT et al (2011) Detection of recurrent prostate carcinoma with anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT and 111In-capromab pendetide SPECT/CT. Radiology 259:852–861

    Article  PubMed Central  PubMed  Google Scholar 

  5. Schuster DM, Taleghani PA, Nieh PT et al (2013) Characterization of primary prostate carcinoma by anti-1-amino-2-[(18)F]-fluorocyclobutane-1-carboxylic acid (anti-3-[(18) F]FACBC) uptake. Am J Nucl Med Mol Imaging 3:85–96

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Schuster DM, Votaw JR, Nieh PT et al (2007) Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48:56–63

    CAS  PubMed  Google Scholar 

  7. Amzat R, Taleghani P, Miller DL et al (2013) Pilot study of the utility of the synthetic PET amino-acid radiotracer anti-1-amino-3-[(18) F]fluorocyclobutane-1-carboxylic acid for the noninvasive imaging of pulmonary lesions. Mol Imaging Biol 15:633–643

    Article  PubMed  Google Scholar 

  8. Sorensen J, Owenius R, Lax M, Johansson S (2013) Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur J Nucl Med Mol Imaging 40:394–402

    Article  PubMed  Google Scholar 

  9. Asano Y, Inoue Y, Ikeda Y et al (2011) Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med 25:414–418

    Article  CAS  PubMed  Google Scholar 

  10. Nanni C, Schiavina R, Boschi S et al (2013) Comparison of 18F-FACBC and 11C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl Med Mol Imaging 40(Suppl 1):S11–17

    Article  PubMed  Google Scholar 

  11. Schuster DM, Nieh PT, Jani AB et al (2014) Anti-3-[(18) F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol 191:1446–1453

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nanni C, Schiavina R, Brunocilla E, et al. (2013) 18F-FACBC compared with 11C-choline PET/CT in patients with biochemical relapse after radical prostatectomy: a prospective study in 28 patients. Clin Genitourin Cancer 12(2):106–10. doi:10.1016/j.clgc.2013.08.002

  13. Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49:480–508

    Article  PubMed  Google Scholar 

  14. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  PubMed  Google Scholar 

  15. Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196:167–173

    Article  CAS  PubMed  Google Scholar 

  16. Velasquez LM, Boellaard R, Kollia G et al (2009) Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 50:1646–1654

    Article  CAS  PubMed  Google Scholar 

  17. de Langen AJ, Vincent A, Velasquez LM et al (2012) Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med 53:701–708

    Article  PubMed  Google Scholar 

  18. Weber WA, Ziegler SI, Thödtmann R et al (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40:1771–1777

    CAS  PubMed  Google Scholar 

  19. Kamibayashi T, Tsuchida T, Demura Y et al (2008) Reproducibility of semi-quantitative parameters in FDG-PET using two different PET scanners: influence of attenuation correction method and examination interval. Mol Imaging Biol 10:162–166

    Article  PubMed  Google Scholar 

  20. Nahmias C, Wahl LM (2008) Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 49:1804–1808

    Article  PubMed  Google Scholar 

  21. McConathy J, Voll RJ, Yu W et al (2003) Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot 58:657–666

    Article  CAS  PubMed  Google Scholar 

  22. Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189:847–850

    Article  CAS  PubMed  Google Scholar 

  23. Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196:167–173

    Article  CAS  PubMed  Google Scholar 

  24. Shou H, Eloyan A, Lee S et al (2013) Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2). Cogn Affect Behav Neurosci 13:714–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cheebsumon P, van Velden FH, Yaqub M et al (2011) Effects of image characteristics on performance of tumor delineation methods: a test-retest assessment. J Nucl Med 52:1550–1558

    Article  CAS  PubMed  Google Scholar 

  26. Okamoto S, Shiga T, Yasuda K et al (2013) High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med 54:201–207

    Article  CAS  PubMed  Google Scholar 

  27. Costes N, Zimmer L, Reilhac A et al (2007) Test-retest reproducibility of 18F-MPPF PET in healthy humans: a reliability study. J Nucl Med 48:1279–1288

    Article  PubMed  Google Scholar 

  28. Kenny LM, Contractor KB, Hinz R et al (2010) Reproducibility of [11C] choline-positron emission tomography and effect of trastuzumab. Clin Cancer Res 16:4236–4245

    Article  CAS  PubMed  Google Scholar 

  29. Koeppe RA, Shulkin BL, Rosenspire KC et al (1991) Effect of aspartame-derived phenylalanine on neutral amino acid uptake in human brain: a positron emission tomography study. J Neurochem 56:1526–1535

    Article  CAS  PubMed  Google Scholar 

  30. Paquet N, Albert A, Foidart J, Hustinx R (2004) Within-patient variability of (18) F-FDG: standardized uptake values in normal tissues. J Nucl Med 45:784–788

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Eric Jablonowski for his help with the figures included in the manuscript. This study was funded by the National Institutes of Health (5R01CA129356) and (P50 CA 128301), and Georgia Cancer Coalition.

Conflict of Interest

Emory University and Dr. Mark Goodman are eligible to receive royalties from anti-3-[18F]FACBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Schuster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odewole, O.A., Oyenuga, O.A., Tade, F. et al. Reproducibility and Reliability of Anti-3-[18F]FACBC Uptake Measurements in Background Structures and Malignant Lesions on Follow-Up PET-CT in Prostate Carcinoma: an Exploratory Analysis. Mol Imaging Biol 17, 277–283 (2015). https://doi.org/10.1007/s11307-014-0797-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0797-1

Key words

Navigation