Skip to main content

Advertisement

Log in

Hyperpolarized and Inert Gas MRI: The Future

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is a potentially ideal imaging modality for noninvasive, nonionizing, and longitudinal assessment of disease. Hyperpolarized (HP) agents have been developed in the past 20 years for MR imaging, and they have the potential to vastly improve MRI sensitivity for the diagnosis and management of various diseases. The polarization of nuclear magnetic resonance (NMR)-sensitive nuclei other than 1H (e.g., 3He, 129Xe) can be enhanced by a factor of up to 100,000 times above thermal equilibrium levels, which enables direct detection of the HP agent with no background signal. In this review, a number of HP media applications in MR imaging are discussed, including HP 3He and 129Xe lung imaging, HP 129Xe brain imaging, and HP 129Xe biosensors. Inert fluorinated gas MRI, which is a new lung imaging technique that does not require hyperpolarization, is also briefly discussed. This technique will likely be an important future direction for the HP gas lung imaging community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lauterbur PC (1973) Image formation by induced local interactions—examples employing nuclear magnetic-resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  2. Leawoods JC, Yablonskiy DA, Saam B et al (2001) Hyperpolarized He-3 gas production and MR imaging of the lung. Concepts Magn Reson 13:277–293

    Article  CAS  Google Scholar 

  3. Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67

    Article  CAS  PubMed  Google Scholar 

  4. Wu NY, Cheng HC, Ko JS et al (2011) Magnetic resonance imaging for lung cancer detection: experience in a population of more than 10,000 healthy individuals. BMC Cancer 11:242

    Article  PubMed Central  PubMed  Google Scholar 

  5. Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26:4012–4021

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bagnato F, Hametner S, Yao B et al (2011) Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134:3602–3615

    Article  PubMed  Google Scholar 

  7. Schenck JF (2005) Brain iron as an endogenous contrast agent in high-field MRI. In Medicinal Inorganic Chemistry, Eds. Sessler J, Doctrow S, McMurry T, Lippard S. American Chemical Society, pp 44-61.

  8. Werner EJ, Datta A, Jocher CJ, Raymond KN (2008) High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem Int Ed Engl 47:8568–8580

    Article  CAS  PubMed  Google Scholar 

  9. Blasiak B, van Veggel FCJM, Tomanek B (2013) Applications of nanoparticles for MRI cancer diagnosis and therapy. J Nanomater 2013:148578

    Google Scholar 

  10. Johnson KM, Fain SB, Schiebler ML, Nagle S (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fain S, Schiebler ML, McCormack DG, Parraga G (2010) Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J Magn Reson Imaging 32:1398–1408

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sa RC, Cronin MV, Henderson AC et al (2010) Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI. J Appl Physiol 109:1950–1959

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62:656–664

    Article  PubMed  Google Scholar 

  14. Altes TA, Salerno M (2004) Hyperpolarized gas MR imaging of the lung. J Thorac Imaging 19:250–258

    Article  PubMed  Google Scholar 

  15. Albert MS, Cates GD, Driehuys B et al (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370:199–201

    Article  CAS  PubMed  Google Scholar 

  16. Goodson BM (2002) Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J Magn Reson 155:157–216

    Article  CAS  PubMed  Google Scholar 

  17. Cleveland ZI, Cofer GP, Metz G et al (2010) Hyperpolarized Xe MR imaging of alveolar gas uptake in humans. PLoS One 5:e12192

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kaushik SS, Cleveland ZI, Cofer GP et al (2011) Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med 65:1154–1165

    Article  PubMed Central  PubMed  Google Scholar 

  19. Mugler JP 3rd, Driehuys B, Brookeman JR et al (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37:809–815

    Article  PubMed  Google Scholar 

  20. Zhou X (2012) Hyperpolarized Xenon Brain MRI. In Advances in Brain Imaging, Ed. Chaudhary DV. Shanghai: InTech

  21. Walker TG, Happer W (1997)Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642

    Article  CAS  Google Scholar 

  22. Suchanek K, Cieslar K, Olejniczak Z et al (2005) Hyperpolarized He-3 gas production by metastability exchange optical pumping for magnetic resonance imaging. Opt Appl 35:263–276

    CAS  Google Scholar 

  23. Comment A, Jannin S, Hyacinthe JN et al (2010) Hyperpolarizing gases via dynamic nuclear polarization and sublimation. Phys Rev Lett 105:018104

    Article  CAS  PubMed  Google Scholar 

  24. Kastler A (1957) Optical methods of atomic orientation and of magnetic resonance. J Opt Soc Am 47:460–465

    Article  CAS  Google Scholar 

  25. Moller HE, Chen XJ, Saam B et al (2002) MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 47:1029–1051

    Article  PubMed  Google Scholar 

  26. Mugler JP 3rd, Altes TA (2013) Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 37:313–331

    Article  PubMed Central  PubMed  Google Scholar 

  27. Couch MJ, Ouriadov A, Santyr GE (2012) Regional ventilation mapping of the rat lung using hyperpolarized 129Xe magnetic resonance imaging. Magn Reson Med 68:1623–1631

    Article  CAS  PubMed  Google Scholar 

  28. Thomas AC, Potts EN, Chen BT et al (2009) A robust protocol for regional evaluation of methacholine challenge in mouse models of allergic asthma using hyperpolarized 3He MRI. NMR Biomed 22:502–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Emami K, Kadlecek SJ, Woodburn JM et al (2010) Improved technique for measurement of regional fractional ventilation by hyperpolarized 3He MRI. Magn Reson Med 63:137–150

    PubMed Central  PubMed  Google Scholar 

  30. Parraga G, Ouriadov A, Evans A et al (2007) Hyperpolarized 3He ventilation defects and apparent diffusion coefficients in chronic obstructive pulmonary disease: preliminary results at 3.0 Tesla. Invest Radiol 42:384–391

    Article  PubMed  Google Scholar 

  31. Wild JM, Fichele S, Woodhouse N et al (2005) 3D volume-localized pO2 measurement in the human lung with 3He MRI. Magn Reson Med 53:1055–1064

    Article  PubMed  Google Scholar 

  32. Woods JC, Choong CK, Yablonskiy DA et al (2006) Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med 56:1293–1300

    Article  PubMed Central  PubMed  Google Scholar 

  33. Tustison NJ, Altes TA, Song G et al (2010) Feature analysis of hyperpolarized helium-3 pulmonary MRI: a study of asthmatics versus nonasthmatics. Magn Reson Med 63:1448–1455

    Article  PubMed  Google Scholar 

  34. Couch MJ, Ball IK, Li T, et al. (2014) Inert fluorinated gas MRI: a new pulmonary imaging modality. NMR Biomed DOI:10.1002/nbm.3165

  35. Kirby M, Heydarian M, Svenningsen S et al (2012) Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation. Acad Radiol 19:141–152

    Article  PubMed  Google Scholar 

  36. Lee EY, Sun Y, Zurakowski D et al (2009) Hyperpolarized 3He MR imaging of the lung: normal range of ventilation defects and PFT correlation in young adults. J Thorac Imaging 24:110–114

    Article  PubMed  Google Scholar 

  37. de Lange EE, Altes TA, Patrie JT et al (2009) Changes in regional airflow obstruction over time in the lungs of patients with asthma: evaluation with 3He MR imaging. Radiology 250:567–575

    Article  PubMed  Google Scholar 

  38. Liu Z, Araki T, Okajima Y et al (2014) Pulmonary hyperpolarized noble gas MRI: recent advances and perspectives in clinical application. Eur J Radiol 83:1282–1291

    Article  PubMed  Google Scholar 

  39. Teague WG, Tustison NJ, Altes TA (2014) Ventilation heterogeneity in asthma. J Asthma DOI:10.3109/02770903.2014.914535

  40. Wechsler ME, Laviolette M, Rubin AS et al (2013) Bronchial thermoplasty: long-term safety and effectiveness in patients with severe persistent asthma. J Allergy Clin Immunol 132:1295–1302

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sheshadri A, Thomen R, Kozlowski J et al (2013) Ventilation defects with hyperpolarized helium MRI in severe asthma before and after bronchial thermoplasty. Am J Respir Crit Care Med 187:A5443

    Google Scholar 

  42. Sun Y, O’Sullivan BP, Roche JP et al (2011) Using hyperpolarized 3He MRI to evaluate treatment efficacy in cystic fibrosis patients. J Magn Reson Imaging 34:1206–1211

    Article  PubMed  Google Scholar 

  43. Altes TA, Johnson M, Mugler JP et al (2012) Hyperpolarized helium-3 MRI detects the effects of a CFTR potentiator (ivacaftor) therapy in subjects with cystic fibrosis and the g551d mutation. Proc ISMRM 20:1359

    Google Scholar 

  44. Branca RT, Cleveland ZI, Fubara B et al (2010) Molecular MRI for sensitive and specific detection of lung metastases. Proc Natl Acad Sci U S A 107:3693–3697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Holmes JH, O’Halloran RL, Brodsky EK et al (2008) 3D hyperpolarized He-3 MRI of ventilation using a multi-echo projection acquisition. Magn Reson Med 59:1062–1071

    Article  PubMed Central  PubMed  Google Scholar 

  46. Yu J, Law M, Kadlecek S et al (2009) Simultaneous measurement of pulmonary partial pressure of oxygen and apparent diffusion coefficient by hyperpolarized 3He MRI. Magn Reson Med 61:1015–1021

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hamedani H, Kadlecek SJ, Emami K et al (2012) A multislice single breath-hold scheme for imaging alveolar oxygen tension in humans. Magn Reson Med 67:1332–1345

    Article  PubMed  Google Scholar 

  48. Woods JC (2013) Mine the moon for 3He MRI? Not yet. J Appl Physiol 114:705–706

    Article  CAS  PubMed  Google Scholar 

  49. Kouzes RT, Ely JH, Erikson LE et al (2010) Neutron detection alternatives to He-3 for national security applications. Nucl Instrum Meth A 623:1035–1045

    Article  CAS  Google Scholar 

  50. Nikolaou P, Coffey AM, Walkup LL et al (2013) Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci U S A 110:14150–14155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hersman FW, Ruset IC, Ketel S et al (2008) Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol 15:683–692

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kirby M, Svenningsen S, Kanhere N et al (2013) Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema. J Appl Physiol 114:707–715

    Article  CAS  PubMed  Google Scholar 

  53. Kirby M, Svenningsen S, Owrangi A et al (2012) Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology 265:600–610

    Article  PubMed  Google Scholar 

  54. Chen XJ, Moller HE, Chawla MS et al (1999) Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo. Part I: diffusion coefficient. Magn Reson Med 42:721–728

    Article  CAS  PubMed  Google Scholar 

  55. Basser PJ, Mattiello J, Lebihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Ser B 103:247–254

    Article  CAS  Google Scholar 

  56. Hansen JE, Ampaya EP (1975) Human air space shapes, sizes, areas, and volumes. J Appl Physiol 38:990–995

    CAS  PubMed  Google Scholar 

  57. Rizi RR, Baumgardner JE, Ishii M et al (2004) Determination of regional VA/Q by hyperpolarized 3He MRI. Magn Reson Med 52:65–72

    Article  PubMed  Google Scholar 

  58. Qing K, Ruppert K, Jiang Y et al (2014) Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI. J Magn Reson Imaging 39:346–359

    Article  PubMed Central  PubMed  Google Scholar 

  59. Sakai K, Bilek AM, Oteiza E et al (1996) Temporal dynamics of hyperpolarized 129Xe resonances in living rats. J Magn Reson B 111:300–304

    Article  CAS  PubMed  Google Scholar 

  60. Ruppert K, Brookeman JR, Hagspiel KD et al (2000) NMR of hyperpolarized (129)Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed 13:220–228

    Article  CAS  PubMed  Google Scholar 

  61. Abdeen N, Cross A, Cron G et al (2006) Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold. Magn Reson Med 56:255–264

    Article  CAS  PubMed  Google Scholar 

  62. Patz S, Muradian I, Hrovat MI et al (2008) Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol 15:713–727

    Article  PubMed Central  PubMed  Google Scholar 

  63. Chang YV, Quirk JD, Ruset IC et al (2014) Quantification of human lung structure and physiology using hyperpolarized 129Xe. Magn Reson Med 71:339–344

    Article  PubMed  Google Scholar 

  64. Fox MS, Ouriadov A, Thind K et al (2014) Detection of radiation induced lung injury in rats using dynamic hyperpolarized (129)Xe magnetic resonance spectroscopy. Med Phys 41:072302

    Article  PubMed  Google Scholar 

  65. Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP 3rd (2000) Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med 44:349–357

    Article  CAS  PubMed  Google Scholar 

  66. Dregely I, Mugler JP 3rd, Ruset IC et al (2011) Hyperpolarized Xenon-129 gas-exchange imaging of lung microstructure: first case studies in subjects with obstructive lung disease. J Magn Reson Imaging 33:1052–1062

    Article  PubMed Central  PubMed  Google Scholar 

  67. Reeder SB, McKenzie CA, Pineda AR et al (2007) Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging 25:644–652

    Article  PubMed  Google Scholar 

  68. Kaushik SS, Freeman MS, Cleveland ZI et al (2013) Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging. J Appl Physiol 115:850–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Chang YV, Conradi MS (2006) Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI. J Magn Reson 181:191–198

    Article  CAS  PubMed  Google Scholar 

  70. Couch MJ, Ball IK, Li T et al (2013) Pulmonary ultrashort echo time 19F MR imaging with inhaled fluorinated gas mixtures in healthy volunteers: feasibility. Radiology 269:903–909

    Article  PubMed  Google Scholar 

  71. Halaweish AF, Moon RE, Foster WM et al (2013) Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans. Chest 144:1300–1310

    Article  PubMed  Google Scholar 

  72. Halaweish AF, Foster WM, Moon RE, MacIntyre NR, MacFall JR, Charles HC (2013) Dynamics of pulmonary ventilation distribution at steady state via 19fluorine-enhanced MRI: initial experiences and future developments. Proc ISMRM 21:4111

    Google Scholar 

  73. Schreiber WG, Eberle B, Laukemper-Ostendorf S et al (2001) Dynamic 19F-MRI of pulmonary ventilation using sulfur hexafluoride (SF6) gas. Magn Reson Med 45:605–613

    Article  CAS  PubMed  Google Scholar 

  74. Swanson SD, Rosen MS, Agranoff BW et al (1997) Brain MRI with laser-polarized 129Xe. Magn Reson Med 38:695–698

    Article  CAS  PubMed  Google Scholar 

  75. Albert MS, Kacher DF, Balamore D et al (1999) T1 of 129Xe in blood and the role of oxygenation. J Magn Reson 140:264–273

    Article  CAS  PubMed  Google Scholar 

  76. Wolber J, Cherubini A, Leach MO, Bifone A (2000) On the oxygenation-dependent 129Xe T1 in blood. NMR Biomed 13:234–237

    Article  CAS  PubMed  Google Scholar 

  77. Norquay G, Leung G, Stewart NJ et al (2014) Revisiting the 129Xe relaxation rate in human blood and quantifying the relaxivity of deoxyhaemoglobin in the presence of 129Xe. Proc ISMRM 22:2292

    Google Scholar 

  78. Kilian W, Seifert F, Rinneberg H (2002) Chemical shift imaging of human brain after inhaling hyperpolarized 129Xe-gas. Proc ISMRM 10

  79. Zhou X, Mazzanti ML, Chen JJ et al (2008) Reinvestigating hyperpolarized 129Xe longitudinal relaxation time in the rat brain with noise considerations. NMR Biomed 21:217–225

    Article  CAS  PubMed  Google Scholar 

  80. Kilian W, Seifert F, Rinneberg H (2004) Dynamic NMR spectroscopy of hyperpolarized 129Xe in human brain analyzed by an uptake model. Magn Reson Med 51:843–847

    Article  CAS  PubMed  Google Scholar 

  81. Wakai A, Nakamura K, Kershaw J, Kanno I (2004) In vivo MR spectroscopy of hyperpolarized Xe-129 in rat brain. Int Congr Ser 1265:139–143

    Article  CAS  Google Scholar 

  82. Kershaw J, Nakamura K, Kondoh Y et al (2007) Confirming the existence of five peaks in 129Xe rat head spectra. Magn Reson Med 57:791–797

    Article  CAS  PubMed  Google Scholar 

  83. Zhou X, Sun Y, Mazzanti M et al (2010) MRI of stroke using hyperpolarized 129Xe. NMR Biomed 24:170–175

    Article  PubMed  Google Scholar 

  84. Mazzanti ML, Walvick RP, Zhou X et al (2011) Distribution of hyperpolarized xenon in the brain following sensory stimulation: preliminary MRI findings. PLoS One 6:e21607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Nouls J, Cleveland ZI, Freeman MS et al (2011) 3D MRI of the hyperpolarized 129Xe distribution in the rat brain. Proc ISMRM 19:879

    Google Scholar 

  86. Rao MR, Stewart NJ, Norquay G, Wild JM (2014) Spectroscopy of dissolved 129Xe in human brain at 1.5T. Proc ISMRM. 22: 3532.

  87. Delacour L, Kotera N, Traore T et al (2013) “Clickable” hydrosoluble PEGylated cryptophane as a universal platform for 129Xe magnetic resonance imaging biosensors. Chemistry 19:6089–6093

    Article  CAS  PubMed  Google Scholar 

  88. Palaniappan KK, Ramirez RM, Bajaj VS et al (2013) Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem Int Ed Engl 52:4849–4853

    Article  CAS  PubMed  Google Scholar 

  89. Bartik K, Luhmer M, Dutasta J-P et al (1998) 129Xe and 1H NMR study of the reversible trapping of xenon by cryptophane-a in organic solution. J Am Chem Soc 120:784–791

    Article  CAS  Google Scholar 

  90. Schroder L, Lowery TJ, Hilty C et al (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314:446–449

    Article  PubMed  Google Scholar 

  91. Meldrum T, Bajaj VS, Wemmer DE, Pines A (2011) Band-selective chemical exchange saturation transfer imaging with hyperpolarized xenon-based molecular sensors. J Magn Reson 213:14–21

    Article  CAS  PubMed  Google Scholar 

  92. Stevens TK, Palaniappan KK, Ramirez RM et al (2013) HyperCEST detection of a 129Xe-based contrast agent composed of cryptophane-A molecular cages on a bacteriophage scaffold. Magn Reson Med 69:1245–1252

    Article  CAS  PubMed  Google Scholar 

  93. Dowhos KM, Fox MS, Ball IK et al (2014) Enhanced 129Xe Hyper-CEST efficiency using pk11195 functionalized cryptophane-A. Proc ISMRM 22:3537

    Google Scholar 

  94. Shapiro MG, Ramirez RM, Sperling LJ et al (2014) Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat Chem 6:629–634

    Article  CAS  PubMed  Google Scholar 

  95. Klippel S, Dopfert J, Jayapaul J et al (2014) Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization. Angew Chem Int Ed Engl 53:493–496

    Article  CAS  PubMed  Google Scholar 

  96. Boutin C, Leonce E, Brotin T et al (2013) Ultrafast Z-spectroscopy for Xe NMR-based sensors. J Phys Chem Lett 4:4172–4176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Dopfert J, Witte C, Kunth M, Schroder L (2014) Sensitivity enhancement of (Hyper-)CEST image series by exploiting redundancies in the spectral domain. Contrast Media Mol Imaging 9:100–107

    Article  PubMed  Google Scholar 

  98. Stevens TK, Ramirez RM, Pines A (2013) Nanoemulsion contrast agents with sub-picomolar sensitivity for xenon NMR. J Am Chem Soc 135:9576–9579

    Article  CAS  PubMed  Google Scholar 

  99. Wolber J, Rowland IJ, Leach MO, Bifone A (1999) Perfluorocarbon emulsions as intravenous delivery media for hyperpolarized xenon. Magn Reson Med 41:442–449

    Article  CAS  PubMed  Google Scholar 

  100. Bartusik D, Tomanek B (2013) Detection of (19) F-labeled biopharmaceuticals in cell cultures with magnetic resonance. Adv Drug Deliv Rev 65:1056–1064

Download references

Acknowledgments

This work was funded in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Thunder Bay Regional Research Institute (TBRRI). MJC was supported by an NSERC Canada Graduate Scholarship (CGS). Thanks to Bastiaan Driehuys, Sivaram Kaushik, Grace Parraga, Damien Pike, John Mugler III, and Kun Qing for generously providing figures, to Brenton DeBoef for synthesizing cryptophanes, to Ralph Hashoian for making the RF coils and interface electronics, and to the Thunder Bay Regional Health Sciences Centre (TBRHSC) MR technologists for their time and assistance with MR scanning of volunteers.

Conflict of Interest

Mitchell S. Albert is a member of the International Workshop for Pulmonary Functional Imaging (IWPFI) board and also receives royalties from patents licensed to Polarean, Inc. All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell S. Albert.

Additional information

Marcus J. Couch and Barbara Blasiak Both first authors contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couch, M.J., Blasiak, B., Tomanek, B. et al. Hyperpolarized and Inert Gas MRI: The Future. Mol Imaging Biol 17, 149–162 (2015). https://doi.org/10.1007/s11307-014-0788-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0788-2

Key words

Navigation