Skip to main content

Advertisement

Log in

Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Saturation Transfer (CEST) MRI

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models.

Procedures

CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured.

Results

The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state.

Conclusions

This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38:2651–2660

    PubMed  CAS  Google Scholar 

  2. Kumar R, Kuniyasu H, Bucana CD et al (1998) Spatial and temporal expression of angiogenic molecules during tumor growth and progression. Oncol Res 10:301–311

    PubMed  CAS  Google Scholar 

  3. Eberhard A, Kahlert S, Goede V et al (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    PubMed  CAS  Google Scholar 

  4. Picchio M, Beck R, Haubner R et al (2008) Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med 49:597–605

    Article  PubMed  Google Scholar 

  5. Gonzalez-Garcia I, Sole RV, Costa J (2002) Metapopulation dynamics and spatial heterogeneity in cancer. Proc Natl Acad Sci U S A 99:13085–13089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Schroeder T, Yuan H, Viglianti BL et al (2005) Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat. Cancer Res 65:5163–5171

    Article  PubMed  CAS  Google Scholar 

  7. Li LZ, Zhou R, Xu HN et al (2009) Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential. Proc Natl Acad Sci U S A 106:6608–6613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Xu HN, Zheng G, Tchou J et al (2013) Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging. SpringerPlus 2:73

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu HN, Tchou J, Li LZ (2013) Redox imaging of human breast cancer core biopsies: a preliminary investigation. Acad Radiol 20:764–768

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu HN, Nioka S, Glickson JD et al (2010) Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J Biomed Opt 15:036010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  PubMed  CAS  Google Scholar 

  12. Fidler IJ (1987) Review: biologic heterogeneity of cancer metastases. Breast Cancer Res Treat 9:17–26

    Article  PubMed  CAS  Google Scholar 

  13. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  14. Ying WH (2008) NAD(+)/ NADH and NADP(+)/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  PubMed  CAS  Google Scholar 

  15. Orrenius S, Gogvadze A, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol 47:143–183

    Article  CAS  Google Scholar 

  16. Li LZ (2012) Imaging mitochondrial redox potential and its possible link to tumor metastatic potential. J Bioenerg Biomembr 44:645–653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Quistorff B, Haselgrove JC, Chance B (1985) High spatial-resolution readout of 3-D metabolic organ structure—an automated, low-temperature redox ratio-scanning instrument. Anal Biochem 148:389–400

    Article  PubMed  CAS  Google Scholar 

  18. Li LZ, Zhou R, Zhong T et al (2007) Predicting melanoma metastatic potential by optical and magnetic resonance imaging. Adv Exp Med Biol 599:67–78

    Article  PubMed  Google Scholar 

  19. Xu HN, Nioka S, Li LZ (2013) Imaging heterogeneity in the mitochondrial redox state of premalignant pancreas in the pancreas-specific PTEN-null transgenic mouse model. Biomark Res 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu HN, Feng M, Moon L et al (2013) Redox imaging of the p53-dependent mitochondrial redox state in colon cancer ex vivo. J Innov Opt Health Sci 6(3):1350016

    Article  Google Scholar 

  21. Ostrander JH, McMahon CM, Lem S et al (2010) Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res 70:4759–4766

    Article  PubMed  CAS  Google Scholar 

  22. Walsh AJ, Cook RS, Manning HC et al (2013) Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res 73:6164–6174

    Article  PubMed  CAS  Google Scholar 

  23. Zhou JY, Tryggestad E, Wen ZB et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–U308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. van Zijl PC, Jones CK, Ren J et al (2007) MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A 104:4359–4364

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Haris M, Cai K, Singh A et al (2011) In vivo mapping of brain myo-inositol. Neuroimage 54:2079–2085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Cai K, Haris M, Singh A et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Cai K, Xu HN, Singh A et al (2013) Characterizing prostate tumor mouse xenografts with CEST and MT-MRI and redox scanning. Adv Exp Med Biol 765:39–45

    Article  PubMed  CAS  Google Scholar 

  29. Cheng LL, Chang IW, Smith BL, Gonzalez RG (1998) Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J Magn Reson 135:194–202

    Article  PubMed  CAS  Google Scholar 

  30. Sitter B, Sonnewald U, Spraul M et al (2002) High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed 15:327–337

    Article  PubMed  CAS  Google Scholar 

  31. Veech RL (2006) The determination of the redox states and phosphorylation potential in living tissues and their relationship to metabolic control of disease phenotypes. Biochem Mol Biol Educ: Bimon Publ Int Union Biochem Mol Biol 34:168–179

    Article  CAS  Google Scholar 

  32. Haris M, Nanga RP, Singh A et al (2012) Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 25:1305–1309

    Article  PubMed  CAS  Google Scholar 

  33. Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Ameri K, Luong R, Zhang H et al (2010) Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br J Cancer 102:561–569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Xu HN, Zhou R, Nioka S et al (2009) Histological basis of MR/optical imaging of human melanoma mouse xenografts spanning a range of metastatic potentials. Adv Exp Med Biol 645:247–253

    Article  PubMed  Google Scholar 

  36. Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kung H-N, Marks JR, Chi J-T (2011) Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 7:e1002229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Cuperlovic-Culf M, Chute IC, Culf AS et al (2011) 1H NMR metabolomics combined with gene expression analysis for the determination of major metabolic differences between subtypes of breast cell lines. Chem Sci 2:2263–2270

    Article  CAS  Google Scholar 

  39. Li LZ, Xu HN, Ranji M et al (2009) Mitochondrial redox imaging for cancer diagnostic and therapeutic studies. J Innov Opt Health Sci 2:325–341

    Article  Google Scholar 

  40. Lemasters JJ, Nieminen AL (2001) Mitochondria in pathogenesis. Kluwer Academic/Plenum Publishers.

  41. Boschi F, Marzola P, Sandri M et al (2008) Tumor microvasculature observed using different contrast agents: a comparison between Gd-DTPA-albumin and B-22956/1 in an experimental model of mammary carcinoma. MAGMA 21:169–176

    Article  PubMed  CAS  Google Scholar 

  42. Horas JA, Olguin OR, Rizzotto MG (2005) On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects. Phys Med Biol 50:1689–1701

    Article  PubMed  Google Scholar 

  43. Cao Y, Nagesh V, Hamstra D et al (2006) The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas. Cancer Res 66:8912–8917

    Article  PubMed  CAS  Google Scholar 

  44. Liu G, Li Y, Sheth VR, Pagel MD (2012) Imaging in vivo extracellular pH with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Mol Imaging 11:47–57

    PubMed  Google Scholar 

  45. Bhujwalla ZM, Artemov D, Ballesteros P et al (2002) Combined vascular and extracellular pH imaging of solid tumors. NMR Biomed 15:114–119

    Article  PubMed  CAS  Google Scholar 

  46. Cai K, Shore A, Singh A et al (2012) Blood oxygen level dependent angiography (BOLDangio) and its potential applications in cancer research. NMR Biomed 25:1125–1132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Winter PM, Schmieder AH, Caruthers SD et al (2008) Minute dosages of alpha(nu)beta(3)-targeted fumagillin nanoparticles impair Vx-2 tumor angiogenesis and development in rabbits. FASEB J 22:2758–2767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Jackson A, O’Connor JPB, Parker GJM, Jayson GC (2007) Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 13:3449–3459

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Steve Pickup and Weixia Liu for their technical assistance with animal MRI scanners. This work was supported by the National Center for Research Resources and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health through grant number P41 EB015893 and NIH grants R21-DA032256, R01-CA155348, and 2U24-CA083105. The work was also supported by a grant from Susan G. Komen Research Foundation (KG081069).

Conflict of Interest

The authors disclose no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejia Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Xu, H.N., Singh, A. et al. Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Saturation Transfer (CEST) MRI. Mol Imaging Biol 16, 670–679 (2014). https://doi.org/10.1007/s11307-014-0739-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0739-y

Key words

Navigation