Skip to main content
Log in

Comparison of 4D-MicroSPECT and MicroCT for Murine Cardiac Function

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to compare a new generation of four-dimensional micro-single photon emission computed tomography (microSPECT) with microCT for the quantitative in vivo assessment of murine cardiac function.

Procedures

Four-dimensional isotropic cardiac images were acquired from anesthetized normal C57BL/6 mice with either microSPECT (n = 6) or microCT (n = 6). One additional mouse with myocardial infarction (MI) was scanned with both modalities. Prior to imaging, mice were injected with either technetium tetrofosmin for microSPECT or a liposomal blood pool contrast agent for microCT. Segmentation of the left ventricle (LV) was performed using Vitrea (Vital Images) software, to derive global and regional function.

Results

Measures of global LV function between microSPECT and microCT groups were comparable (e.g., ejection fraction = 71 ± 6 % microSPECT and 68 ± 4 % microCT). Regional functional indices (wall motion, wall thickening, regional ejection fraction) were also similar for the two modalities. In the mouse with MI, microSPECT identified a large perfusion defect that was not evident with microCT.

Conclusions

Despite lower spatial resolution, microSPECT was comparable to microCT in the quantitative evaluation of cardiac function. MicroSPECT offers an advantage over microCT in the ability to evaluate simultaneously myocardial radiotracer distribution and function, simultaneously. MicroSPECT should be considered as an alternative to microCT and magnetic resonance for preclinical cardiac imaging in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88(2):389–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Breckenridge R (2010) Heart failure and mouse models. Dis Models Mech 3(3–4):138–143

    Article  Google Scholar 

  3. Bucholz E, Ghaghada K, Qi Y, Mukundan S et al (2010) Cardiovascular phenotyping of the mouse heart using a 4D radial acquisition and liposomal Gd-DTPA-BMA. Magn Reson Med 63(4):979–987

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zaragoza C, Lavin B, Egido J et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841

    Article  PubMed Central  PubMed  Google Scholar 

  5. Constantinides C (2013) Chapter 14: study of the murine cardiac mechanical function using magnetic resonance imaging: the current status, challenges, and future perspectives. In: Andrade A (ed) Practical applications in biomedical engineering. InTech Open Science Publications. ISBN: 978-953-51-0924-2

  6. Perrino C, Gargiulo G, Pironti G et al (2011) Cardiovascular effects of treadmill exercise in physiological and pathological preclinical settings. Am J Physiol Heart Circ Physiol 300(6):1983–1989

    Article  Google Scholar 

  7. Badea CT, Bucholz E, Hedlund LW et al (2006) Imaging methods for morphological and functional phenotyping of the rodent heart. Toxicol Path 34(1):111–117

    Article  Google Scholar 

  8. Bucholz E, Ghaghada K, Qi Y, Mukundan S, Johnson GA (2008) Four-dimensional MR microscopy of the mouse heart using radial acquisition and liposomal gadolinium contrast agent. Magn Reson Med 60(1):111–118

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dawson D, Lygate CA, Saunders J et al (2004) Quantitative 3-dimensional echocardiography for accurate and rapid cardiac phenotype characterization in mice. Circulation 110(2):1632–1637

    Article  PubMed  Google Scholar 

  10. Schneider JE, Cassidy PJ, Lygate C et al (2003) Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system. J Magn Reson Imaging 18(6):691–701

    Article  PubMed  Google Scholar 

  11. Stegger L, Schafers KP, Schafers MA et al (2009) Quantification of left ventricular volumes and ejection fraction in mice using PET, compared with MRI. J Nucl Med 50(1):132–138

    Article  PubMed  Google Scholar 

  12. Wiesmann F, Ruff J, Hiller KH et al (2000) Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol 278(2):H652–H657

    CAS  Google Scholar 

  13. Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31(12):3324–3329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Badea CT, Fubara B, Hedlund LW, Johnson GA (2005) 4-D micro-CT of the mouse heart. Mol Imaging 4(2):110–116

    PubMed  Google Scholar 

  15. Badea CT, Wetzel AW, Mistry N et al (2008) Left ventricle volume measurements in cardiac micro-CT: the impact of radiation dose and contrast agent. Comput Med Imaging Graph 32(3):239–250

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bartling SH, Stiller W, Grasruck M et al (2007) Retrospective motion gating in small animal CT of mice and rats. Invest Radiol 42(10):704–714

    Article  PubMed  Google Scholar 

  17. Drangova M, Ford NL, Detombe SA et al (2007) Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice. Invest Radiol 42(2):85–94

    Article  PubMed  Google Scholar 

  18. Chin BB, Metzler SD, Lemaire A et al (2007) Left ventricular functional assessment in mice: feasibility of high spatial and temporal resolution ECG-gated blood pool SPECT. Radiology 245(2):440–448

    Article  PubMed  Google Scholar 

  19. Constantinesco A, Choquet P, Monassier L et al (2005) Assessment of left ventricular perfusion, volumes, and motion in mice using pinhole gated SPECT. J Nucl Med 46(6):1005–1011

    PubMed  Google Scholar 

  20. Golestani R, Wu C, Tio RA et al (2010) Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging 37(9):1766–1777

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lahoutte T (2007) Monitoring left ventricular function in small animals. J Nucl Cardiol 14(3):371–379

    Article  PubMed  Google Scholar 

  22. Deleye S, Holen R, Verhaeghe J et al (2013) Performance evaluation of small-animal multipinhole SPECT scanners for mouse imaging. Eur J Nucl Med Mol Imaging 40(5):744–758

    Article  CAS  PubMed  Google Scholar 

  23. Branderhorst W, Vastenhouw B, Beekman FJ (2010) Pixel-based subsets for rapid multi-pinhole SPECT reconstruction. Phys Med Biol 55(7):2023–2034

    Article  PubMed  Google Scholar 

  24. Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53(19):R319–R350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Badea CT, Johnston S, Johnson B et al (2008) A dual micro-CT system for small animal imaging. In: Hsieh J, Samei E (eds) Medical imaging 2008: physics of medical imaging. SPIE, Bellingham, Proceedings of SPIE (vol 6913, article CID no. 147)

    Google Scholar 

  26. Mukundan S Jr, Ghaghada KB, Badea CT et al (2006) A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am J of Roentgenol 186(2):300–307

    Article  Google Scholar 

  27. Johnston SM, Johnson GA, Badea CT (2012) Temporal and spectral imaging with micro-CT. Med Phys 39(8):4943–4958

    Article  PubMed Central  PubMed  Google Scholar 

  28. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am 1(6):612–619

    Article  Google Scholar 

  29. Nahrendorf M, Badea C, Hedlund LW et al (2007) High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. Am J Physiol Heart Circ Physiol 292(6):H3172–H3178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023–1027

    PubMed  Google Scholar 

  31. De Lin M, Toncheva G, Nguyen G et al (2008) Application of MOSFET detectors for dosimetry in small animal radiography using short exposure times. Radiat Res 170(2):260–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Song X, Pogue BW, Jiang S et al (2004) Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl Opt 43(5):1053–1062

    Article  PubMed  Google Scholar 

  33. Vital Images Inc. Vitrea® reference guide (VPMC-10119F).

  34. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  35. Ennis D (2007) Bullseye polar data plot. MATLAB Central file exchange. http://www.mathworks.com/matlabcentral/fileexchange/16458-bullseye-polar-data-plot. Accessed 12 Feb 2013

  36. Funk T, Sun M, Hasegawa BH (2004) Radiation dose estimate in small animal SPECT and PET. Med Phys 31(9):2680–2686

    Article  CAS  PubMed  Google Scholar 

  37. Taschereau R, Chow PL, Chatziioannou AF (2006) Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 33(1):216–224

    Article  PubMed Central  PubMed  Google Scholar 

  38. Feintuch A, Zhu Y, Bishop J et al (2007) 4D cardiac MRI in the mouse. NMR Biomed 20(3):360–365

    Article  PubMed  Google Scholar 

  39. de Jonge GJ, van Ooijen PM, Overbosch J et al (2011) Comparison of (semi-)automatic and manually adjusted measurements of left ventricular function in dual source computed tomography using three different software tools. Int J Cardiovasc Imaging 27(6):787–794

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ashton JR, Befera N, Clark D, et al. (2013) Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent. Contrast Media and Molecular Imaging. doi:10.1002/cmmi.1557

  41. Peukert D, Laule M, Taupitz M et al (2007) 3D and 2D delayed-enhancement magnetic resonance imaging for detection of myocardial infarction: preclinical and clinical results. Acad Radiol 14(7):788–794

    Article  PubMed  Google Scholar 

  42. Price AN, Cheung KK, Lim SY et al (2011) Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4 T. J Cardiol Magn Reson 13:44

    Article  Google Scholar 

Download references

Acknowledgments

All work was performed by the Duke Center for In Vivo Microscopy, an NIH/NIBIB Biomedical Technology Resource Center (P41 EB015897). Special thanks go to Yi Qi for helping with animal setup and to Sidney Simon and Sally Zimney for their editorial assistance. Liposomal contrast agent for microCT has been provided by Dr. Ketan Ghaghada (Texas Children’s Hospital).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Allan Johnson.

Supplementary Data

Supplementary Data

Supplementary material for this article can be found online at http://www.civm.duhs.duke.edu/4DmicroSpectCT2013/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Befera, N.T., Badea, C.T. & Johnson, G.A. Comparison of 4D-MicroSPECT and MicroCT for Murine Cardiac Function. Mol Imaging Biol 16, 235–245 (2014). https://doi.org/10.1007/s11307-013-0686-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0686-z

Key words

Navigation