Skip to main content
Log in

Evaluation of New Bone Formation in Normal and Osteoporotic Rats with a 3-mm Femur Defect: Functional Assessment with Dynamic PET-CT (dPET-CT) Using 2-Deoxy-2-[18F]Fluoro-d-glucose (18F-FDG) and 18F-Fluoride

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the current study was to assess the formation of new bone in a 3-mm created defect in the femur and its adjacent bone tissue in osteoporotic and normal animals. The assessment is based on bone remodeling and glucose metabolism in a rat model with a 3-mm created defct in the femur using 18F-fluoride and 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) as tracers for dynamic PET-CT (dPET-CT). The 18F-fluoride PET data were compared with those of 18F-FDG.

Procedures

Osteoporosis was induced by ovariectomy and a calcium restricted diet in each rat (n = 7). Alternatively, a sham operation was performed in the control group (n = 8). After 3 months, all rats were operated to create a 3-mm defect using an oscillating saw in the distal metaphyseal femur, which was internally fixed with a metal plate. Eighteen weeks after osteoporosis induction and 6 weeks following femoral surgery, dPET-CT studies scan were performed with 18F-FDG and 18F-fluoride. Following PET data acquisition, standardized uptake values (SUVs) were calculated from the tracer concentration values. Then, a two-tissue compartmental learning-machine model was applied to the data for the calculation of the compartment parameters (K1-k4, VB, Ki). Furthermore, a non-compartmental model based on the fractal dimension was applied for quantitative analysis of both groups and both tracers. Finally, multivariate analysis was performed for the statistical analysis of the kinetic data.

Results

The values for K1 and Ki were higher in the osteoporotic rats than in the control group. Ki and K1 of 18F-fluoride in the adjacent bone tissue differ significantly based on the Wilcoxon rank-sum test for the osteoporotic and control group (p < 0.05). The sensitivity and the negative predictive value (NPV) based on linear discriminant analysis was high with a value of 100 % for both tracers and both evaluated regions (defect and adjacent bone tissue) when comparing control and osteoporotic rats. The overall accuracy with 18F-FDG was generally higher than that with 18F-fluoride for both evaluated regions for the control and osteoporotic rats based on a multiparameter evaluation.

Conclusion

In this study, the changes in tracer kinetics accurately discriminated differences in the created defect in the femur and its adjacent bone tissue between osteoporotic and control rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

18F-FDG:

2-deoxy-2-[18F]fluoro-d-glucose

dPET-CT:

dynamic PET-CT

BMD:

bone mineral density

DEXA:

dual energy X-ray absorptiometry

SUV:

standardized uptake value

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  2. Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific reviews. JAMA 288:1889–1897

    Article  PubMed  Google Scholar 

  3. Unnanuntana A, Gladnick BP, Donnelly E, Lane JM (2010) The assessment of fracture risk. J Bone Joint Surg Am 92:743–753

    Article  PubMed  Google Scholar 

  4. Zebaze RM, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodeling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  5. Fogelman I, Cook G, Israel O, van der Wall H (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35:135–142

    Article  PubMed  Google Scholar 

  6. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST (2008) Skeletal PET with 18F-Fluoride applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  7. Hawkins RA, Chio Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, Satyamurthy N, Barrio JR, Phelps ME (1992) Evaluation of skeletal kinetics of fluoride ion with PET. J Nucl Med 33:633–642

    PubMed  CAS  Google Scholar 

  8. Blau M, Ganatra R, Bender M (1972) 18F-fluoride for bone imaging. Semin Nucl Med 2:31–37

    Article  PubMed  CAS  Google Scholar 

  9. Narita N, Kato K, Nakagaki H, Ohno N, Kameyama Y, Weatherell JA (1990) Distribution of fluoride concentration in rat bone. Calcif Tissue Int 46:200–204

    Article  PubMed  CAS  Google Scholar 

  10. Ishiguro K, Nakagaki H, Tsuboi S, Narita N, Kato K, Li J, Kamei H, Yoshioka I, Miyauchi K, Hosoe H, Shimano R, Weatherell JA, Robinson C (1993) Distribution of fluoride in cortical bone of human rib. Calcif Tissue Int 52:278–282

    Article  PubMed  CAS  Google Scholar 

  11. Reeve J, Arlot M, Wootton R, Edouard C, Tellez M, Hesp R, Green JR, Meunier PJ (1988) Skeletal blood flow, iliac histomorphometry and strontium kinetics in osterporosis: A relationship between blood flow and corrected apposition rate. J Clin Endocrinol Metab 66:1124–1131

    Article  PubMed  CAS  Google Scholar 

  12. Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR (1990) Routine production of 2-deoxy-2 (18F)fluoro-d-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol 3:273–279

    Google Scholar 

  13. Satyamurthy N, Amarasekera B, Alvord CW, Barrio JR, Phelps ME (2002) Tantalum [18O]water target for the production of [18F]fluoride with high reactivity for the preparation of 2-deoxy-2-[18F]fluoro-d-glucose. Mol Imaging Biol 4:65–70

    Article  PubMed  CAS  Google Scholar 

  14. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648

    PubMed  CAS  Google Scholar 

  15. Mikolajczyk K, Szabatin M, Rudnicki P et al (1998) A JAVA environment for medical image data analysis: initial application for brain PET quantitation. Med Inform 23:207–214

    Article  CAS  Google Scholar 

  16. Burger C, Buck A (1997) Requirements and implementations of a flexible kinetic modelling tool. J Nucl Med 38:181–1823

    Google Scholar 

  17. Miyazawa H, Osmont A, Petit-Taboue MC et al (1993) Determination of 18F-Fluoro-2-deoxy-d-glucose rate constants in the anesthetized baboon brain with dynamic positron tomography. J Neurosci Methods 50:263–272

    Article  PubMed  CAS  Google Scholar 

  18. Sokoloff L, Smith CB (1983) Basic principles underlying radioisotopic methods for assay of biochemical processes in vivo. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studies with positron emission tomography. Raven, New York, pp 123–148

    Google Scholar 

  19. Cheng C, Pan L, Dimitrakopoulou-Strauss A, Schäfer M, Wängler C, Wängler B, Haberkorn U, Strauss LG (2011) Comparison between 68 Ga-bombesin (68 Ga-BZH3) and the cRGD tetramer 68 Ga-RGD4 studies in an experimental nude rat model with a neuroendocrine pancreatic tumor cell line. EJNMMI Res 1:34

    Article  PubMed  Google Scholar 

  20. Logan KW, Hickey KA, Bull SR (1983) Gamma camera MTFs from edge response function measurements. Med Phys 10:361–364

    Article  PubMed  CAS  Google Scholar 

  21. Strauss LG, Pan L, Koczan D et al (2007) Fusion of positron emission tomography (PET) and gene array data: a new approach for the correlative analysis of molecular biological and clinical data. IEEE Trans Med Imaging 26:804–812

    Article  PubMed  Google Scholar 

  22. Dimitrakopoulou-Strauss A, Strauss LG, Mikolajczyk A et al (2003) On the fractal nature of dynamic positron emission tomography (PET) studies. World J Nucl Med 2:306–313

    Google Scholar 

  23. Duan Y, Tabensky A, Deluca V, Seeman E (1997) The benefit of hormone replacement therapy on bone mass is greater at the vertebral body than posterior processes or proximal femur. Bone 21:447–451

    Article  PubMed  CAS  Google Scholar 

  24. Kl B, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1994) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119

    Google Scholar 

  25. Yoshida Y, Moriya A, Kitamura K, Inazu M, Okimoto N, Okazaki Y, Nakamura T (1998) Responses of trabecular and cortical bone turnover and bone mass and strength to bisphosphonate YH529 in ovariohysterectomized beagles with calcium restriction. J Bone Miner Res 13:1011–1022

    Article  PubMed  CAS  Google Scholar 

  26. Israel O, Lubushitzky R, Frenkel A, Iosilevsky G, Bettman L, Gips S, Hardoff R, Baron E, Barzilai D, Kolodny GM (1994) Bone turnover in cortical and trabecular bone in normal women and women with osteoporosis. J Nucl Med 35:1155–1158

    PubMed  CAS  Google Scholar 

  27. Heiss C, Govindarajan P, Schlewitz G, Hemdan N, Schliefke N, Alt V, Thormann U, Lips KS, Wenisch S, Langheinrich AC, Zahner D, Schnettler R (2012) Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA. Revision

  28. Cook GJR, Lodge MA, Blake GM, Marsden PK, Fogelman I (2000) Differences in skeletal kinetics between vertebral and humeral bone measured by 18F-fluoride position emission tomography in postmenopausal women. J Bone Miner Res 15:763–769

    Article  PubMed  CAS  Google Scholar 

  29. Schiepers C, Nuyts J, Bormans G, Dequeker J, Bouillon R, Mortelmans L, Verbruggen A, De Roo M (1997) Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 38:1970–1976

    PubMed  CAS  Google Scholar 

  30. Frost ML, Blake GM, Park-Holohan SJ, Cook GJR, Curran KM, Marsden PK, Fogelman I (2008) Long-term precision of 18F-fluoride PET skeletal kinetic studies in the assessment of bone metabolism. J Nucl Med 49:700–707

    Article  PubMed  Google Scholar 

  31. Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK (2000) Infection imaging using whole-body FDG-PET. Eur J Nucl Med 27:822–832

    Article  PubMed  CAS  Google Scholar 

  32. Schulte M, Brecht-Krauss D, Heymer B et al (2000) Grading of tumors and tumorlike lesion of bone: evaluation by FDG PET. J Nucl Med 41:1695–1701

    PubMed  CAS  Google Scholar 

  33. Aoki J, Watanabe H, Shinozaki T et al (2001) FDG PET of primary benigh and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    PubMed  CAS  Google Scholar 

  34. de Winter F, Vogelaers D, Gemmel F, Dierckx RA (2002) Promising role of 18-F-fluoro-d-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 21:247–257

    Article  PubMed  Google Scholar 

  35. Koort JK, Mäkinen TJ, Knuuti J, Jalava J, Aro HT (2004) Comparative 18F-FDG-PET imaging of experimental staphylococcusaureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411

    PubMed  Google Scholar 

  36. Schmitz A, Risse JH, Textor J, Zande D, Biersack HJ, Schmitt O, Palmedo H (2002) FDG-Pet findings of vertebral compression fracture in osteoporosis: preliminary results. Osteoporos Int 13:755–761

    Article  PubMed  Google Scholar 

  37. Guhlmann A, Brecht-Krauss D, Suger G (1998) Chronic osteomyelitis: detection with FDG-PET and correlation with histiopathologic finding. Radiology 206:749–754

    PubMed  CAS  Google Scholar 

  38. Zoidis E, Ghirlanda-keller C, Schmid C (2011) Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol Cell Biochem 348:33–42

    Article  PubMed  CAS  Google Scholar 

  39. Zoidis E, Ghirlanda-Keller C, Schmid C (2012) Thriodothyronine stimulated glucose transport in bone cells. Endocrine Epub ahead of print

  40. Heaney RP (1993) Nutritional factors in osteoporosis. Annu Rev Nutr 13:287–316

    Article  PubMed  CAS  Google Scholar 

  41. Heaney RP (1996) Pathogenesis of postmenopausal osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 3rd edn. Lippincott-Raven, Philadelphia, pp 252–254

    Google Scholar 

Download references

Acknowledgements

This study is part of the Sonderforschungsbereich-Transregio 79 (SFB-TR 79) and was in part financially supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG).

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, C., Alt, V., Dimitrakopoulou-Strauss, A. et al. Evaluation of New Bone Formation in Normal and Osteoporotic Rats with a 3-mm Femur Defect: Functional Assessment with Dynamic PET-CT (dPET-CT) Using 2-Deoxy-2-[18F]Fluoro-d-glucose (18F-FDG) and 18F-Fluoride. Mol Imaging Biol 15, 336–344 (2013). https://doi.org/10.1007/s11307-012-0592-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0592-9

Key words

Navigation