Skip to main content
Log in

Impact of Indium-111 Oxine Labelling on Viability of Human Mesenchymal Stem Cells In Vitro, and 3D Cell-Tracking Using SPECT/CT In Vivo

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study investigates the effects of 111In-oxine incorporation on human mesenchymal stem cells’ (hMSC) biology and viability, and the applicability of 111In-oxine for single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) monitoring of hMSC in vivo.

Procedures

HMSC were labelled with 10 Bq/cell. Cellular retention of radioactivity, cell survival, and migration were evaluated over 48 h. Metabolic activity was assessed over 14 days and the hMSC’s stem cell character was evaluated. Serial SPECT/CT was performed after intra-osseous injection to athymic rats over 48 h.

Results

Labelling efficiency was 25%, with 61% of incorporated 111In remaining in the hMSC at 48 h. The radiolabelling was without effect on cell viability, stem cell character, and plasticity, whereas metabolic activity and migration were significantly reduced. Grafted cells could be imaged in situ with SPECT/CT.

Conclusions

111In-oxine labelling moderately impaired hMSC’s functional integrity while preserving their stem cell character. Combined SPECT/CT imaging of 111In-oxine-labelled hMSC opens the possibility for non-invasive sequential monitoring of therapeutic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drosse I, Volkmer E, Capanna R et al (2008) Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 39(Suppl 2):S9–S20

    Article  PubMed  Google Scholar 

  2. Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    Article  PubMed  CAS  Google Scholar 

  3. Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963

    Article  PubMed  CAS  Google Scholar 

  4. Wang C, Wang Z, Li A et al (2009) Repair of segmental bone-defect of goat’s tibia using a dynamic perfusion culture tissue engineering bone. J Biomed Mater Res A 92A:1145–1153

    Google Scholar 

  5. Zhou XZ, Leung VY, Dong QR et al (2008) Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. Int J Artif Organs 31:480–489

    PubMed  CAS  Google Scholar 

  6. Badorff C, Brandes RP, Popp R et al (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032

    Article  PubMed  Google Scholar 

  7. Kassem M (2006) Stem cells: potential therapy for age-related diseases. Ann NY Acad Sci 1067:436–442

    Article  PubMed  CAS  Google Scholar 

  8. Liechty KW, MacKenzie TC, Shaaban AF et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  CAS  Google Scholar 

  9. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  10. Bruder SP, Jaiswal N, Ricalton NS et al (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355:S247–S256

    Article  PubMed  Google Scholar 

  11. Schantz JT, Hutmacher DW, Lam CX et al (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9(Suppl 1):S127–S139

    Article  PubMed  CAS  Google Scholar 

  12. Xian CJ, Foster BK (2006) Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 1:213–229

    Article  PubMed  CAS  Google Scholar 

  13. Saldanha KJ, Piper SL, Ainslie KM, Kim HT, Majumdar S (2008) Magnetic resonance imaging of iron oxide labelled stem cells: applications to tissue engineering based regeneration of the intervertebral disc. Eur Cell Mater 16:17–25

    PubMed  CAS  Google Scholar 

  14. Puppi J, Modo M (2009) Use of magnetic resonance imaging contrast agents to detect transplanted liver cells. Top Magn Reson Imaging 20:113–120

    Article  PubMed  Google Scholar 

  15. Choi HO, Hwang KJ (1987) Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane. J Nucl Med 28:91–96

    PubMed  CAS  Google Scholar 

  16. Bindslev L, Haack-Sorensen M, Bisgaard K et al (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33:1171–1177

    Article  PubMed  CAS  Google Scholar 

  17. Nowak B, Weber C, Schober A et al (2007) Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. Eur J Nucl Med Mol Imaging 34:715–721

    Article  PubMed  CAS  Google Scholar 

  18. Brenner W, Aicher A, Eckey T et al (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518

    PubMed  CAS  Google Scholar 

  19. Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49:349–360

    PubMed  CAS  Google Scholar 

  20. Böcker W, Yin Z, Drosse I et al (2008) Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 12:1347–1359

    Article  Google Scholar 

  21. Volkmer E, Drosse I, Otto S et al (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng A 14:1331–1340

    Article  CAS  Google Scholar 

  22. Gholamrezanezhad A, Mirpour S, Ardekani JM et al (2009) Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun 30:210–216

    Article  PubMed  CAS  Google Scholar 

  23. Jin Y, Kong H, Stodilka RZ et al (2005) Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys Med Biol 50:4445–4455

    Article  PubMed  Google Scholar 

  24. Bustamante J, Dock L, Vahter M, Fowler B, Orrenius S (1997) The semiconductor elements arsenic and indium induce apoptosis in rat thymocytes. Toxicology 118:129–136

    Article  PubMed  CAS  Google Scholar 

  25. Fjälling M, Andersson P, Forssell-Aronsson E et al (1996) Systemic radionuclide therapy using indium-111-DTPA-D-Phe1-octreotide in midgut carcinoid syndrome. J Nucl Med 37:1519–1521

    PubMed  Google Scholar 

  26. Martin RF, Bradley TR, Hodgson GS (1979) Cytotoxicity of an 125I-labeled DNA-binding compound that induces double-stranded DNA breaks. Cancer Res 39:3244–3247

    PubMed  CAS  Google Scholar 

  27. Weaver AS, Su YP, Begun DL et al (2010) The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone 47:41–48

    Article  PubMed  Google Scholar 

  28. Mahmood A, Lu D, Wang L et al (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203

    PubMed  CAS  Google Scholar 

  29. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  30. Assis AC, Carvalho JL, Jacoby BA et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230

    Article  PubMed  Google Scholar 

  31. Haasters F, Prall WC, Anz D et al (2009) Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J Anat 214:759–767

    Article  PubMed  Google Scholar 

  32. Schieker M, Pautke C, Haasters F et al (2007) Human mesenchymal stem cells at the single-cell level: simultaneous seven-colour immunofluorescence. J Anat 210:592–599

    Article  PubMed  Google Scholar 

  33. Jaiswal RK, Jaiswal N, Bruder SP et al (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652

    Article  PubMed  CAS  Google Scholar 

  34. Raimondo S, Penna C, Pagliaro P, Geuna S (2006) Morphological characterization of GFP stably transfected adult mesenchymal bone marrow stem cells. J Anat 208:3–12

    Article  PubMed  Google Scholar 

  35. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  36. Agriantonis DJ, Hall L, Wilson MA (2009) Utility of SPECT/CT as an adjunct to planar whole body I-131 imaging: liver metastasis from papillary thyroid cancer. Clin Nucl Med 34:247–248

    Article  PubMed  Google Scholar 

  37. Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33:205–218

    Article  PubMed  Google Scholar 

  38. ten Berge RJ, Natarajan AT, Hardeman MR, van Royen EA, Schellekens PT (1983) Labeling with indium-111 has detrimental effects on human lymphocytes: concise communication. J Nucl Med 24:615–620

    PubMed  Google Scholar 

  39. Kraitchman DL, Tatsumi M, Gilson WD et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461

    Article  PubMed  Google Scholar 

  40. Shake JG, Gruber PJ, Baumgartner WA et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925

    Article  PubMed  Google Scholar 

  41. Terrovitis JV, Bulte JW, Sarvananthan S et al (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng 12:2765–2775

    Article  PubMed  CAS  Google Scholar 

  42. Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49

    Article  PubMed  Google Scholar 

  43. Lien CY, Chih-Yuan HK, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24:837–848

    Article  PubMed  CAS  Google Scholar 

  44. Lan X, Yin X, Wang R, Liu Y, Zhang Y (2009) Comparative study of cellular kinetics of reporter probe [(131)I]FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors. Nucl Med Biol 36:207–213

    Article  PubMed  CAS  Google Scholar 

  45. Roelants V, Labar D, de Meester C et al (2008) Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49:1836–1844

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Bavarian Research Foundation (Bavarian Research Collaboration for Cell-Based Regeneration of the Musculo-Skeletal System in Old Age, www.forzebra.de). We thank Mr. S. Nowak, Ms. M. Buchwald, Ms. T. Bockhöfer, and Ms. A. Brunegraf for assistance in SPECT/CT image acquisition.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schieker.

Additional information

Franz Josef Gildehaus and Florian Haasters contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gildehaus, F.J., Haasters, F., Drosse, I. et al. Impact of Indium-111 Oxine Labelling on Viability of Human Mesenchymal Stem Cells In Vitro, and 3D Cell-Tracking Using SPECT/CT In Vivo . Mol Imaging Biol 13, 1204–1214 (2011). https://doi.org/10.1007/s11307-010-0439-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0439-1

Key words

Navigation