Skip to main content

Advertisement

Log in

Metabolomics of the human aqueous humor

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The optical elements of the eye—cornea, lens, and vitreous humor—are avascular tissues, and their nutrition and waste removal are provided by aqueous humor (AH). The AH production occurs through the active secretion and the passive diffusion/ultrafiltration of blood plasma. The comparison of the metabolomic profiles of AH and plasma is important for understanding of the mechanisms of biochemical processes and metabolite transport taking place in vivo in ocular tissues.

Objectives

The work is aimed at the determination of concentrations of a wide range of most abundant metabolites in the human AH, the comparison of the metabolomic profiles of AH and serum, and the analysis of the post-mortem metabolomic changes in these two biological fluids.

Methods

The quantitative metabolomic profiling was carried out with the use of two independent methods—high-frequency 1H NMR spectroscopy and HPLC with high-resolution ESI-MS detection.

Results

The concentrations of 71 most abundant metabolites in blood serum and AH from living patients and human cadavers have been measured. It has been found that the level of ascorbate in AH is by two orders of magnitude higher than that in serum; the levels of other metabolites are either similar to that in serum, or differ from that by a factor of 2–5. The post-mortem metabolomic composition of both serum and AH undergoes rapid and strong changes.

Conclusion

The differences between the metabolomic profiles of AH and serum for majority of metabolites can be attributed to the metabolic activity of the ocular tissues leading to the lack or excess of some metabolites, while the high concentration of ascorbate in AH demonstrates the activity of ascorbate-specific pumps at the blood-aqueous border. The post-mortem metabolomic changes are caused by the disruption of the major biochemical cycles and cell lysis. These changes should be taken into account in the analysis of disease-induced changes in post-mortem samples of the ocular tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Annesley, T. M. (2003). Ion suppression in mass spectrometry. Clinical Chemistry, 49(7), 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. C. C., Sadler, P. J., Spalton, D. J., Juul, S. M., Macleod, A. F., & Sönksen, P. H. (1986). Analysis of human aqueous humour by high resolution 1H NMR spectroscopy. Experimental Eye Research, 42, 357–362.

    Article  CAS  PubMed  Google Scholar 

  • Brubaker, R. F. (1991). Flow of aqueous humor in humans. The Fridenwald lecture. Investigative Ophthalmology and Visual Science, 32(13), 3145–3166.

    CAS  PubMed  Google Scholar 

  • Civan, M. M., & Macknight, A. D. C. (2004). The ins and outs of aqueous humour secretion. Experimental Eye Research, 78(3), 625–631.

    Article  CAS  PubMed  Google Scholar 

  • Cotran, R. S., Kumar, V., & Robbins, S. L. (1994). Cellular injury and cellular death (5th ed.). Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Delamere, N. A. (1996). Ascorbic acid and the eye. Subcellular Biochemistry, 25, 313–329.

    Article  CAS  PubMed  Google Scholar 

  • DiMattio, J. (1989). A comparative study of ascorbic acid entry into aqueous and vitreous humors of the rat and guinea pig. Investigative Ophthalmology and Visual Science, 30(11), 2320–2331.

    CAS  PubMed  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2013). Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PloS One, 8(11), e82011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2014). Estimation of post-mortem interval using biochemical markers. Australian Journal of Forensic Sciences, 46(1), 8–26.

    Article  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2015). Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval. Metabolomics, 11(1), 237–245.

    Article  CAS  Google Scholar 

  • Fitch, C. L., Swedberg, S. H., & Livesey, J. C. (2000). Measurement and manipulation of the partial pressure of oxygen in the rat anterior chamber. Current Eye Research, 20(2), 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Freddo, T. F. (2013). A contemporary concept of the blood-aqueous barrier. Progress in Retinal and Eye Research, 32, 181–195.

    Article  CAS  PubMed  Google Scholar 

  • Gabelt, B. T., Kiland A., Tian, B., & Kaufman, P. L. (2006). Foundation Volume 2, Chap. 6. Aqueous humor: secretion and dynamics. Duane’s ophthalmology. http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v8/v8c006.html.

  • Goel, M., Picciani, R. G., Lee, R. K., & Bhattacharya, S. K. (2010). Aqueous humor dynamics: a review. The Open Ophthalmology Journal, 4, 52–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowda, G. A. N., Gowda, Y. N., & Raftery, D. (2015). Expanding the limits of human blood metabolite quantitation using nmr spectroscopy. Analytical Chemistry, 87(1), 706–715.

    Article  PubMed  Google Scholar 

  • Gowda, G. A. N., & Raftery, D. (2014). Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Analytical Chemistry, 86(11), 5433–5440.

    Article  CAS  PubMed Central  Google Scholar 

  • Gribbestad, I. S., & Midelfart, A. (1994). High-resolution 1H NMR spectroscopy of aqueous humour from rabbits. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Für Klinische Und Experimentelle Ophthalmologie, 232(8), 494–498.

    Article  CAS  PubMed  Google Scholar 

  • Hu, R. G., Zhu, Y., Donaldson, P., & Kalloniatis, M. (2012). Alterations of glutamate, glutamine, and related amino acids in the anterior eye secondary to ischaemia and reperfusion. Current Eye Research, 37(7), 633–643.

    Article  PubMed  Google Scholar 

  • Human Metabolome Database. http://www.hmdb.ca. Accessed 14 June 2016.

  • Keleş, M. S., Keleş, S., Kulaçoğlu, D. N., Taysí, S., Baykal, O., Memíşoğullari, R., et al. (2011). Free amino acid concentration in aqueous humour of patients with nuclear or cortical cataract. Turkish Journal of Medical Sciences, 41(3), 501–505.

    Google Scholar 

  • Kryczka, T., Ehlers, N., Nielsen, K., Wylegala, E., Dobrowolski, D., & Midelfart, A. (2013). Metabolic profile of keratoconic cornea. Current Eye Research, 38(2), 305–309.

    Article  CAS  PubMed  Google Scholar 

  • Macknight, A. D. C., McLaughlin, C. W., Peart, D., Purves, R. D., Carre, D. A., & Civan, M. M. (2004). Formation of the aqueous humor. Clinical and Experimental Pharmacology and Physiology, 27, 100–106.

    Article  Google Scholar 

  • Mark, H. H. (2010). Aqueous humor dynamics in historical perspective. Survey of Ophthalmology, 55(1), 89–100.

    Article  PubMed  Google Scholar 

  • Mayordomo-Febrer, A., López-Murcia, M., Morales-Tatay, J. M., Monleón-Salvado, D., & Pinazo-Durán, M. D. (2015). Metabolomics of the aqueous humor in the rat glaucoma model induced by a series of intracamerular sodium hyaluronate injection. Experimental Eye Research, 131, 84–92.

    Article  CAS  PubMed  Google Scholar 

  • McNulty, R., Wang, H., Mathias, R. T., Ortwerth, B. J., Truscott, R. J. W., & Bassnett, S. (2004). Regulation of tissue oxygen levels in the mammalian lens. The Journal of Physiology, 559(3), 883–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PloS One, 6(2), e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy, D. V. N., Rosenberg, C., & Kinsey, V. E. (1961). Steady state distribution of free amino acids in the aqueous humours, vitreous body and plasma of the rabbit. Experimental Eye Research, 1(2), 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Reiss, G. R., Werness, P. G., Zollman, P. E., & Brubaker, R. F. (1986). Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Archives of Ophthalmology, 104(5), 753–755.

    Article  CAS  PubMed  Google Scholar 

  • Serum Metabolome Database. http://www.serummetabolome.ca. Accessed 14 June 2016.

  • Sherin, P. S., Zelentsova, E. A., Sormacheva, E. D., Yanshole, V. V., Duzhak, T. G., & Tsentalovich, Y. P. (2016). Aggregation of α-crystallins in kynurenic acid-sensitized UVA photolysis under anaerobic conditions. Physical Chemistry Chemical Physics: PCCP, 18(13), 8827–8839.

    Article  CAS  PubMed  Google Scholar 

  • Snytnikova, O. A., Sherin, P. S., Kopylova, L. V., & Tsentalovich, Y. P. (2007). Kinetics and mechanism of reactions of photoexcited kynurenine with molecules of some natural compounds. Russian Chemical Bulletin, 56(4), 732–738.

    Article  CAS  Google Scholar 

  • Song, Z., Gao, H., Liu, H., & Sun, X. (2011). Metabolomics of rabbit aqueous humor after administration of glucocorticosteroid. Current Eye Research, 36(6), 563–570.

    Article  CAS  PubMed  Google Scholar 

  • Streete, I. M., Jamie, J. F., & Truscott, R. J. W. (2004). Lenticular levels of amino acids and free UV filters differ significantly between normals and cataract patients. Investigative Ophthalmology and Visual Science, 45(11), 4091–4098.

    Article  PubMed  Google Scholar 

  • Tamara, S. O., Yanshole, L. V., Yanshole, V. V., Fursova, A. Z., Stepakov, D. A., Novoselov, V. P., et al. (2016). Spatial distribution of metabolites in the human lens. Experimental Eye Research, 143, 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Tkadlecová, M., Havlíček, J., Volka, K., Souček, P., & Karel, I. (1999). Study of aqueous humour by 1H NMR spectroscopy. Journal of Molecular Structure, 480481, 601–605.

    Article  Google Scholar 

  • To, C. H., Kong, C. H., Chan, C. Y., Shahidullah, M., & Do, C. W. (2002). The mechanism of aqueous humor formation. Clinical and Experimental Optometry, 85(6), 335–349.

    Article  PubMed  Google Scholar 

  • Tsentalovich, Y. P., Verkhovod, T. D., Yanshole, V. V., Kiryutin, A. S., Yanshole, L. V., Fursova, A. Z., et al. (2015). Metabolomic composition of normal aged and cataractous human lenses. Experimental Eye Research, 134, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Varma, S. D. (1987). Ascorbic acid and the eye with special reference to the lens. Annals of the New York Academy of Sciences, 498(1), 280–306.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi, Y., Yagihashi, T., Kezuka, J., Muramatsu, D., Usui, M., & Iwasaki, T. (2006). Glutamate levels in aqueous humor of patients with retinal artery occlusion. The journal of retinal and vitreous diseases, 26(4), 432–436.

    Google Scholar 

  • Yanshole, V. V., Snytnikova, O. A., Kiryutin, A. S., Yanshole, L. V., Sagdeev, R. Z., & Tsentalovich, Y. P. (2014). Metabolomics of the rat lens: a combined LC-MS and NMR study. Experimental Eye Research, 125, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Zelentsova, E. A., Yanshole, L. V., Snytnikova, O. A., Yanshole, V. V., Tsentalovich, Y. P., & Sagdeev, R. Z. (2016). Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics, 12(11), 172.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Scientific Foundation (project No. 14-14-00056) in NMR measurements, by the President of RF (project MK-5367.2015.3) in LC-MS measurements, and by FASO Russia (project 0333-2014-0001) in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri P. Tsentalovich.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Informed consent

All participants signed an informed consent form.

Research involving human participants and/or animals

The study was conducted in accordance with the Declaration of Helsinki (2013) of the World Medical Association, and with the ethical approval from International Tomography Center.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snytnikova, O.A., Khlichkina, A.A., Yanshole, L.V. et al. Metabolomics of the human aqueous humor. Metabolomics 13, 5 (2017). https://doi.org/10.1007/s11306-016-1144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1144-0

Keywords

Navigation