Skip to main content
Log in

Comprehensive optimization of LC–MS metabolomics methods using design of experiments (COLMeD)

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Both reverse-phase and HILIC chemistries are deployed for liquid-chromatography mass spectrometry (LC–MS) metabolomics analyses, however HILIC methods lag behind reverse-phase methods in reproducibility and versatility. Comprehensive metabolomics analysis is additionally complicated by the physiochemical diversity of metabolites and array of tunable analytical parameters.

Objective

Our aim was to rationally and efficiently design complementary HILIC-based polar metabolomics methods on multiple instruments using design of experiments (DoE).

Methods

We iteratively tuned LC and MS conditions on ion-switching triple quadrupole (QqQ) and quadrupole-time-of-flight (qTOF) mass spectrometers through multiple rounds of a workflow we term Comprehensive optimization of LC–MS metabolomics methods using design of experiments (COLMeD). Multivariate statistical analysis guided our decision process in the method optimizations.

Results

LC–MS/MS tuning for the QqQ method on serum metabolites yielded a median response increase of 161.5 % (p < 0.0001) over initial conditions with a 13.3 % increase in metabolite coverage. The COLMeD output was benchmarked against two widely used polar metabolomics methods, demonstrating total ion current increases of 105.8 and 57.3 %, with median metabolite response increases of 106.1 and 10.3 % (p < 0.0001 and p < 0.05 respectively). For our optimized qTOF method, 22 solvent systems were compared on a standard mix of physiochemically diverse metabolites, followed by COLMeD optimization, yielding a median 29.8 % response increase (p < 0.0001) over initial conditions.

Conclusions

The COLMeD process elucidated response tradeoffs, facilitating improved chromatography and MS response without compromising separation of isobars. COLMeD is efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-specific optimization as demonstrated through acylcarnitine optimization within the QqQ method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bligh, E. G., Dyer, W. J., & Can, J. (1959). A rapid method of total lipid extraction and purification. Biochemistry and Physiology, 37(8), 911–917.

    CAS  Google Scholar 

  • Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kockhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 81(9), 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Correa, E., & Goodacre, R. (2011). A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: Application to the rapid identification of Bacillus spores and classification of Bacillus species. BMC Bioinformatics, 12(33), 1–17.

    Google Scholar 

  • Eliasson, M., Rännar, S., Madsen, R., Donten, M. A., Marsden-Edwards, E., Moritz, T., et al. (2012). Strategy for optimizing LC–MS data processing in metabolomics: A design of experiments approach. Analytical Chemistry, 84(15), 6869–6876.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikström, C., & Wold, S. (2006). Design of Experiments, Principles and Applications (2nd ed.). Umeå: Umetrics Academy.

    Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Vrhovsek, U., & Mattivi, F. J. (2012). Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography-tandem mass spectrometry. Chromatograpy A, 1259, 121–127.

    Article  CAS  Google Scholar 

  • Gika, H. G., Wilson, I. D., & Theodoridis, G. A. (2014). LC–MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. Journal of Chromatography B, 966, 1–6.

    Article  CAS  Google Scholar 

  • Hao, Z., Xiao, B., & Weng, N. J. (2008). Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). Journal of Separation Science, 31(9), 1449–1464.

    Article  CAS  PubMed  Google Scholar 

  • Ivanisevic, J., Zhu, Z., Plate, L., Tautenhahn, R., Chen, S., O’Brien, P. J., et al. (2013). Toward ‘omic scale metabolite profiling: A dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Analytical Chemistry, 85(14), 6876–6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivilompolo, M., Òhnrberg, L., Orešič, M., & HyÖtyläinen, T. J. (2013). Rapid quantitative analysis of carnitine and acylcarnitines by ultra-high performance-hydrophilic interaction liquid chromatography-tandem mass spectrometry. Chromatography A, 1292, 189–194.

    Article  CAS  Google Scholar 

  • Kostić, N., Dotsikas, Y., Malenović, A., Stojanović, J. B., Rakić, T., Ivanović, D., et al. (2013). Stepwise optimization approach for improving LC–MS/MS analysis of zwitterionic antiepileptic drugs with implementation of experimental design. Journal of Mass Spectrometry, 48(7), 875–884.

    Article  PubMed  Google Scholar 

  • Lv, H., Palacios, G., Hartil, K., & Kurland, I. J. (2011). Advantages of tandem LC–MS for the rapid assessment of tissue-specific metabolic complexity using a pentafluorophenylpropyl stationary phase. Journal of Proteome Research, 10(4), 2104–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napoles, M. O., & Steenbergen, R. D. J. M. (2014). Analysis of axle and vehicle load properties through Bayesian networks based on weigh-in-motion data. Reliability Engineering & System Safety, 125, 153–164.

    Article  Google Scholar 

  • New, L., & Chan, E. C. Y. (2008). Evaluation of BEH C18, BEH HILIC, and HSS T3 (C18) column chemistries for the UPLC-MS-MS analysis of glutathione, glutathione disulfide, and ophthalmic acid in mouse liver and human plasma. Journal of Chromatographic Science, 46, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, H. P., & Schug, K. A. (2008). The advantages of ESI-MS detection in conjunction with HILIC mode separations: Fundamentals and applications. Journal of Separation Science, 31(9), 1465–1480.

    Article  CAS  PubMed  Google Scholar 

  • Paglia, G., Hrafnsdóttir, S., Magnúsdóttir, M., Fleming, R. M., Thorlacious, S., Palsson, B. Ø., et al. (2012). Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-ToF-MS). Analytical and Bioanalytical Chemistry, 402(3), 1183–1198.

    Article  CAS  PubMed  Google Scholar 

  • Riter, L. S., Vitek, O., Gooding, K. M., Hodge, B. D., & Julian, R. K. (2005). Statistical design of experiments as a tool in mass spectrometry. Journal of Mass Spectrometry, 40(5), 565–579.

    Article  CAS  PubMed  Google Scholar 

  • Sampsonidis, I., Witting, M., Koch, W., Virgillou, C., Gika, H. G., Schmitt-Kopplin, P., et al. (2015). Computational analysis and ratiometric comparison approaches aimed to assist column selection in hydrophilic interaction liquid chromatography-tandem mass spectrometry targeted metabolomics. Journal of Chromatography A, 1406, 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.

    Article  CAS  PubMed  Google Scholar 

  • Székely, G. Y., Henriques, B., Gil, M., Ramos, A., & Alvarez, C. J. (2012). Design of experiments as a tool for LC–MS/MS method development for the trace analysis of the potentially genotoxic 4-dimethylaminopyridine impurity in glucocorticoids. Journal of Pharmaceutical and Biomedical Analysis, 70, 251–258.

    Article  PubMed  Google Scholar 

  • Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., Marklund, S. L., et al. (2005). Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 77(24), 8086–8094.

    Article  PubMed  Google Scholar 

  • Want, E. J., Wilson, I. D., Gika, H., Theodoridis, G., Plumb, R. S., Shockor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC–MS. Nature Protocols, 5(6), 1005–1018.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, M., Breitkopf, S. B., Yang, X., & Asara, J. M. (2012). A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature Protocols, 7(5), 872–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, H., Clausen, M. R., Dalsgaard, K. T., Mortensen, G., & Bertram, C. H. (2013). Time-saving design of experiment protocol for optimization of LC–MS data processing in metabolomic approaches. Analytical Chemistry, 85(15), 7109–7116.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, G., Pang, H., Tang, Y., Yao, X., Mo, X., Zhu, S., et al. (2013). Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for highly rapid and sensitive analysis of underivatized amino acids in functional foods. Amino Acids, 44(5), 1293–1305.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Song, J., Choi, F. F., Wu, H., Qiao, C., Ding, L., et al. (2009). An experimental design approach using response surface techniques to obtain optimal liquid chromatography and mass spectrometry conditions to determine the alkaloids in Meconopsi species. Journal of Chromatography A, 1216(42), 7013–7023.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Institute of Health (Grant No. T32 GM008076), and [National Center for Research Resources (Grant No.UL1RR024134)].The authors would also like to thank Saikumari Krishnaiah for assistance with qTOF data acquisition and Barry Slaff for fruitful discussions regarding qTOF data analysis. S.D.R. is supported through a Pharmacology T32 Training Grant (T32 GM008076). Supported in part by the Institute for Translational Medicine and Therapeutics (ITMAT) Transdisciplinary Program in Translational Medicine and Therapeutics

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aalim M. Weljie.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This article does not contain any experiments with human participants or animals as performed by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhoades, S.D., Weljie, A.M. Comprehensive optimization of LC–MS metabolomics methods using design of experiments (COLMeD). Metabolomics 12, 183 (2016). https://doi.org/10.1007/s11306-016-1132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1132-4

Keywords

Navigation