Skip to main content
Log in

Sex differences in urine metabolites related with risk of diabetes using NMR spectroscopy: results of the study of health in pomerania

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Recently research provides evidence that blood metabolite profiles predicted type 2 diabetes. We aimed to assess the relation of urine metabolites measured via nuclear magnetic resonance spectroscopy with incident type 2 diabetes in a sample of 1353 men and 1356 women. Within 5 years, 87 men and 50 women developed diabetes. Five and 16 urine metabolites were associated with incident diabetes in men and women, respectively. Only three of these metabolites (glucose, lactate and glycine) were found in both sexes. In women, e.g. acetate, carnitine, N,N-dimethylglycine, trigonelline, 3-hydroxyisovalerate, alanine, formate, glycolate, trimethylamine N-oxide and tau-methylhistidine were positively related with diabetes. Receiver operating characteristic (ROC) analysis revealed that compared with a standard model, a model additionally adjusted for urine glucose, trigonelline and trimethylamine N-oxide levels showed a better discrimination between incident diabetes cases and non-cases in women (AUC = 0.874 and 0.903, p = 0.019). In men, valine and 4-hydroxyphenylacetate were found as markers of diabetes. However, ROC analysis did not reveal any improvement in discrimination based on urine metabolites. In conclusion, we confirmed the potential of metabolomics to assess the risk of type 2 diabetes and detected pronounced sex differences. Moreover, we demonstrated the practicability of spot urine samples as potential non-invasive diabetes screening approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahonen, T., Vanhala, M., Kautiainen, H., Kumpusalo, E., & Saltevo, J. (2012). Sex differences in the association of adiponectin and low-grade inflammation with changes in the body mass index from youth to middle age. Gender Medicine, 9(1), 1–8. doi:10.1016/j.genm.2012.01.002.

    Article  PubMed  Google Scholar 

  • Bain, M. A., Faull, R., Fornasini, G., Milne, R. W., & Evans, A. M. (2006). Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrology, Dialysis, Transplantation, 21(5), 1300–1304.

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Connor, E. L., Cohn, B. A., Wingard, D. L., & Edelstein, S. L. (1991). Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? the rancho bernardo study. JAMA, 265(5), 627–631.

    Article  CAS  PubMed  Google Scholar 

  • Bastard, J. P., Maachi, M., Lagathu, C., Kim, M. J., Caron, M., Vidal, H., et al. (2006). Recent advances in the relationship between obesity, inflammation, and insulin resistance. European Cytokine Network, 17(1), 4–12.

    CAS  PubMed  Google Scholar 

  • Bloomgarden, Z. T. (2010). World Congress on the insulin resistance syndrome, 2009: Cellular mechanisms of insulin resistance. Diabetes Care, 33(8), e103–e108. doi:10.2337/dc10-zb08.

    Article  PubMed Central  PubMed  Google Scholar 

  • Camhi, S. M., Bray, G. A., Bouchard, C., Greenway, F. L., Johnson, W. D., Newton, R. L., et al. (2011). The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. Obesity (Silver Spring), 19(2), 402–408. doi:10.1038/oby.2010.248.

    Article  Google Scholar 

  • Clausen, J. O., Borch-Johnsen, K., Ibsen, H., Bergman, R. N., Hougaard, P., Winther, K., et al. (1996). Insulin sensitivity index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy Caucasians. Analysis of the impact of gender, body fat, physical fitness, and life-style factors. Journal of Clinical Investigation, 98(5), 1195–1209. doi:10.1172/JCI118903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coppack, S. W. (2001). Pro-inflammatory cytokines and adipose tissue. Proceedings of the Nutrition Society, 60(3), 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Dellow, W. J., Chambers, S. T., Barrell, G. K., Lever, M., & Robson, R. A. (2001). Glycine betaine excretion is not directly linked to plasma glucose concentrations in hyperglycaemia. Diabetes Research and Clinical Practice, 52(3), 165–169.

    Article  CAS  PubMed  Google Scholar 

  • Dellow, W. J., Chambers, S. T., Lever, M., Lunt, H., & Robson, R. A. (1999). Elevated glycine betaine excretion in diabetes mellitus patients is associated with proximal tubular dysfunction and hyperglycemia. Diabetes Research and Clinical Practice, 43(2), 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Doi, Y., Kiyohara, Y., Kubo, M., Ninomiya, T., Wakugawa, Y., Yonemoto, K., et al. (2005). Elevated C-reactive protein is a predictor of the development of diabetes in a general Japanese population: The Hisayama Study. Diabetes Care, 28(10), 2497–2500.

    Article  CAS  PubMed  Google Scholar 

  • Ferrannini, E., Natali, A., Bell, P., Cavallo-Perin, P., Lalic, N., & Mingrone, G. (1997). Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). Journal of Clinical Investigation, 100(5), 1166–1173. doi:10.1172/JCI119628.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferris, W. F., & Crowther, N. J. (2011). Once fat was fat and that was that: Our changing perspectives on adipose tissue. Cardiovascular Journal of Africa, 22(3), 147–154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Floegel, A., Stefan, N., Yu, Z., Muhlenbruch, K., Drogan, D., Joost, H. G., et al. (2013). Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 62(2), 639–648. doi:10.2337/db12-0495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Friedrich, N. (2012). Metabolomics in Diabetes Research. Journal of Endocrinology, 215(1), 29–42. doi:10.1530/JOE-12-0120.

    Article  CAS  PubMed  Google Scholar 

  • Geer, E. B., & Shen, W. (2009). Gender differences in insulin resistance, body composition, and energy balance. Gender Medicine, 6(Suppl 1), 60–75. doi:10.1016/j.genm.2009.02.002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Han, T. S., Sattar, N., Williams, K., Gonzalez-Villalpando, C., Lean, M. E., & Haffner, S. M. (2002). Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care, 25(11), 2016–2021.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, P., Rizk, N., Ibrahim, S., Luo, Y., Younes, N., Perry, B., et al. (2013). Quantitative metabolomic and lipidomic profiling reveals aberrant amino acid metabolism in type 2 diabetes. Molecular BioSystems, 9(2), 307–317. doi:10.1039/c2mb25384d.

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto, R., Tabara, Y., Kohara, K., Miki, T., Kusunoki, T., Takayama, S., et al. (2011). Association between fasting plasma glucose and high-sensitivity C-reactive protein: Gender differences in a Japanese community-dwelling population. Cardiovasc Diabetol, 10, 51. doi:10.1186/1475-2840-10-51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keil, U., Stieber, J., Doring, A., Chambless, L., Hartel, U., Filipiak, B., et al. (1988). The cardiovascular risk factor profile in the study area Augsburg. Results from the first MONICA survey 1984/85. Acta Medica Scandinavica Supplement, 728, 119–128.

    CAS  Google Scholar 

  • Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576–585. doi:10.1038/nm.3145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipscombe, L. L., & Hux, J. E. (2007). Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995-2005: A population-based study. The Lancet, 369(9563), 750–756. doi:10.1016/S0140-6736(07)60361-4.

    Article  Google Scholar 

  • McGown, C., Birerdinc, A., & Younossi, Z. M. (2014). Adipose tissue as an endocrine organ. Clinics in Liver Disease, 18(1), 41–58. doi:10.1016/j.cld.2013.09.012.

    Article  PubMed  Google Scholar 

  • Messana, I., Forni, F., Ferrari, F., Rossi, C., Giardina, B., & Zuppi, C. (1998). Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clinical Chemistry, 44(7), 1529–1534.

    CAS  PubMed  Google Scholar 

  • Mittelstrass, K., Ried, J. S., Yu, Z., Krumsiek, J., Gieger, C., Prehn, C., et al. (2011). Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genetics, 7(8), e1002215. doi:10.1371/journal.pgen.1002215.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moran, A., Jacobs, D. R, Jr, Steinberger, J., Steffen, L. M., Pankow, J. S., Hong, C. P., et al. (2008). Changes in insulin resistance and cardiovascular risk during adolescence: Establishment of differential risk in males and females. Circulation, 117(18), 2361–2368. doi:10.1161/CIRCULATIONAHA.107.704569.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, S., Yamane, K., Kamei, N., Okubo, M., & Kohno, N. (2003). Elevated C-reactive protein is a risk factor for the development of type 2 diabetes in Japanese Americans. Diabetes Care, 26(10), 2754–2757.

    Article  CAS  PubMed  Google Scholar 

  • Nuutila, P., Knuuti, M. J., Maki, M., Laine, H., Ruotsalainen, U., Teras, M., et al. (1995). Gender and insulin sensitivity in the heart and in skeletal muscles studies using positron emission tomography. Diabetes, 44(1), 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Otsuki, M., Kasayama, S., Saito, H., Mukai, M., & Koga, M. (2005). Sex differences of age-dependent changes of insulin sensitivity in Japanese nondiabetic subjects. Diabetes Care, 28(10), 2590–2591.

    Article  PubMed  Google Scholar 

  • Perreault, L., Ma, Y., Dagogo-Jack, S., Horton, E., Marrero, D., Crandall, J., et al. (2008). Sex differences in diabetes risk and the effect of intensive lifestyle modification in the Diabetes Prevention Program. Diabetes Care, 31(7), 1416–1421. doi:10.2337/dc07-2390.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhee, E. P., & Gerszten, R. E. (2012). Metabolomics and cardiovascular biomarker discovery. Clinical Chemistry, 58(1), 139–147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sattar, N. (2013). Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Practice and Research Clinical Endocrinology and Metabolism, 27(4), 501–507. doi:10.1016/j.beem.2013.05.006.

    Article  CAS  PubMed  Google Scholar 

  • Sesmilo, G., Biller, B. M., Llevadot, J., Hayden, D., Hanson, G., Rifai, N., et al. (2000). Effects of growth hormone administration on inflammatory and other cardiovascular risk markers in men with growth hormone deficiency. A randomized, controlled clinical trial. Annals of Internal Medicine, 133(2), 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Shaham, O., Wei, R., Wang, T. J., Ricciardi, C., Lewis, G. D., Vasan, R. S., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biology, 4, 214. doi:10.1038/msb.2008.50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sicree, R. A., Zimmet, P. Z., Dunstan, D. W., Cameron, A. J., Welborn, T. A., & Shaw, J. E. (2008). Differences in height explain gender differences in the response to the oral glucose tolerance test- the ausdiab study. Diabetic Medicine, 25(3), 296–302. doi:10.1111/j.1464-5491.2007.02362.x.

    Article  CAS  PubMed  Google Scholar 

  • Slupsky, C. M., Rankin, K. N., Wagner, J., Fu, H., Chang, D., Weljie, A. M., et al. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry, 79(18), 6995–7004. doi:10.1021/ac0708588.

    Article  CAS  PubMed  Google Scholar 

  • Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences USA, 100(16), 9440–9445. doi:10.1073/pnas.1530509100.

    Article  CAS  Google Scholar 

  • Suhre, K., Meisinger, C., Doring, A., Altmaier, E., Belcredi, P., Gieger, C., et al. (2010). Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS One, 5(11), e13953. doi:10.1371/journal.pone.0013953.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., et al. (2013a). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine, 368(17), 1575–1584. doi:10.1056/NEJMoa1109400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang, W. H., Wang, Z., Wu, Y., Fan, Y., Koeth, R. A., & Hazen, S. L. (2013b). Gut flora metabolite trimethylamine N-oxide predicts incident cardiovascular risks in both stable non-diabetics and diabetic subjects. Journal of the American College of Cardiology, 61(10), E1398.

    Article  Google Scholar 

  • Thorand, B., Baumert, J., Kolb, H., Meisinger, C., Chambless, L., Koenig, W., et al. (2007). Sex differences in the prediction of type 2 diabetes by inflammatory markers: Results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Diabetes Care, 30(4), 854–860. doi:10.2337/dc06-1693.

    Article  CAS  PubMed  Google Scholar 

  • van Dijk, A. E., Olthof, M. R., Meeuse, J. C., Seebus, E., Heine, R. J., & van Dam, R. M. (2009). Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care, 32(6), 1023–1025. doi:10.2337/dc09-0207.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vannini, P., Marchesini, G., Forlani, G., Angiolini, A., Ciavarella, A., Zoli, M., et al. (1982). Branched-chain amino acids and alanine as indices of the metabolic control in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 22(3), 217–219.

    Article  CAS  PubMed  Google Scholar 

  • Völzke, H., Alte, D., Schmidt, C. O., Radke, D., Lorbeer, R., Friedrich, N., et al. (2011). Cohort Profile: The Study of Health in Pomerania. International Journal of Epidemiology, 40(2), 294–307. doi:10.1093/ije/dyp394.

    Article  PubMed  Google Scholar 

  • Wang, X., Bao, W., Liu, J., Ouyang, Y. Y., Wang, D., Rong, S., et al. (2013a). Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care, 36(1), 166–175. doi:10.2337/dc12-0702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453. doi:10.1038/nm.2307.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, T. J., Ngo, D., Psychogios, N., Dejam, A., Larson, M. G., Vasan, R. S., et al. (2013b). 2-Aminoadipic acid is a biomarker for diabetes risk. The Journal of clinical investigation, 123(10), 4309–4317. doi:10.1172/JCI64801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang-Sattler, R., Yu, Z., Herder, C., Messias, A. C., Floegel, A., He, Y., et al. (2012). Novel biomarkers for pre-diabetes identified by metabolomics. Molecular Systems Biology, 8, 615. doi:10.1038/msb.2012.43.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wopereis, S., Rubingh, C. M., van Erk, M. J., Verheij, E. R., van Vliet, T., Cnubben, N. H., et al. (2009). Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS One, 4(2), e4525. doi:10.1371/journal.pone.0004525.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yin, P., Peter, A., Franken, H., Zhao, X., Neukamm, S. S., Rosenbaum, L., et al. (2013). Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clinical Chemistry, 59(5), 833–845. doi:10.1373/clinchem.2012.199257.

    Article  CAS  PubMed  Google Scholar 

  • Yki-Jarvinen, H. (1984). Sex and insulin sensitivity. Metabolism, 33(11), 1011–1015.

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari, O., Sato, H., & Igarashi, K. (2009). Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Bioscience, Biotechnology, and Biochemistry, 73(5), 1033–1041.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W. M., Kuhara, T., Inoue, Y., Matsumoto, I., Iwasaki, R., & Morimoto, S. (1990). Increased urinary excretion of beta-hydroxyisovaleric acid in ketotic and non-ketotic type II diabetes mellitus. Clinica Chimica Acta, 188(2), 161–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (Grant Nos. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. Preparation and NMR measurement was supported by Bruker BioSpin GmbH Rheinstetten, Germany. This work is also part of the research project Greifswald Approach to Individualized Medicine (GANI_MED). The GANI_MED consortium is funded by the Federal Ministry of Education and Research and the Ministry of Cultural Affairs of the Federal State of Mecklenburg—West Pomerania (03IS2061A).

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical requirements

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nele Friedrich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, N., Budde, K., Suhre, K. et al. Sex differences in urine metabolites related with risk of diabetes using NMR spectroscopy: results of the study of health in pomerania. Metabolomics 11, 1405–1415 (2015). https://doi.org/10.1007/s11306-015-0795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0795-6

Keywords

Navigation