Skip to main content
Log in

Optimizing water suppression for quantitative NMR-based metabolomics: a tutorial review

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In nuclear magnetic resonance (NMR)-based metabolomics, the water suppression scheme is one of the elements that most impact the overall quality of the spectrum. The choice of the solvent suppression scheme and of the associated parameters has therefore a high impact on the accuracy of the resulting spectra. As a consequence, potential users of 1H NMR quantitative metabolomics would certainly benefit from a set of practical tools and recommendations to choose the experimental parameters leading—for a specific metabolomics question—to the most accurate and precise analysis of 1H NMR spectra with solvent suppression. This tutorial review is structured into four parts which address the following questions: (1) why suppress the water signal? (2) what are the difficulties in suppressing the water signal? (3) which methods are available to suppress the water signal? (4) which criteria are pertinent to optimize and compare the different methods? These four parts are completed by an experimental section describing in details all the pulse sequences and parameters used in this paper. For each method, the performances greatly depend on the chosen parameters. For instance, the robustness of the NOESY-1D block is significantly modified when the mixing time is changed. Therefore, we propose simple protocols that can be exploited to evaluate and optimize the performances of a water suppression method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allwood, J. W., de Vos, C. H. R., Moing, A., Deborde, C., Erban, A., Kopka, J., et al. (2011). Plant metabolomics and its potential for systems biology research: Background concepts, technology and methodology. Methods in Enzymology, 500, 299–336.

    Article  CAS  PubMed  Google Scholar 

  • Bax, A. (1985). A spatially selective composite 90° radiofrequency pulse. Journal of Magnetic Resonance, 65, 142–145.

    Google Scholar 

  • Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2, 2692–2703.

    Article  CAS  PubMed  Google Scholar 

  • Bloembergen, N., & Pound, R. V. (1954). Radiation damping in magnetic resonance experiments. Physical Review, 95, 8–12.

    Article  Google Scholar 

  • Bockmann, A., & Guittet, E. (1996). Suppression of radiation damping during selective excitation of the water signal: The WANTED sequence. Journal of Biomolecular NMR, 8, 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Callihan, D., West, J., Kumar, S., Scweitzer, B. I., & Logan, T. M. (1996). Simple, distortion-free homonuclear spectra of peptides and nucleic acids in water using excitation sculpting. Journal of Magnetic Resonance Series B, 112, 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, I. D., Dobson, C. M., & Ratfcliffe, R. G. (1997). Fourier transform proton NMR in H2O. A method for measuring exchange and relaxation rates. Journal of Magnetic Resonance, 27, 455–463.

    Google Scholar 

  • Canet, D., Brondeau, J., Mischler, E., & Humbert, F. (1993). Solvent suppression by use of a DANTE train of B1-gradient pulses. Journal of Magnetic Resonance, 105, 139–244.

    Google Scholar 

  • Davies, S., Bauer, C., Barker, P., & Freeman, R. (1985). The dynamic range problem in NMR. Journal of Magnetic Resonance, 64, 155–159.

    CAS  Google Scholar 

  • Duarte, I. F., & Gil, A. M. (2012). Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Progress in Nuclear Magnetic Resonance Spectroscopy, 62, 51–74.

    Article  CAS  PubMed  Google Scholar 

  • Emwas, A.-H., Salek, R. M., Griffin, J. L., & Merzaban, J. (2013). NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations. Metabolomics, 9, 1048–1072.

    Article  CAS  Google Scholar 

  • Giraudeau, P., Lemeunier, P., Coutand, M., Doux, J.M., Gilbert, A., Remaud, G.S., & Akoka. S. (2011). Ultrafast 2D NMR applied to the kinetic study of D-glucose mutarotation in aqueous solution. Journal of Spectroscopy and Dynamics, 1(2), 1–7.

    Google Scholar 

  • Griffiths, W. J. (2008). Metabolomics, metabonomics and metabolite profiling. Cambridge: Cambridge RSC Publishing.

    Google Scholar 

  • Grzesiek, S., & Bax, A. (1993). The importance of not saturating H2O in protein NMR—application to sensitivity enhancement and noe measurements. Journal of the American Chemical Society, 115, 12593–12594.

    Article  CAS  Google Scholar 

  • Gupta, R. K. (1976). Dynamic range problem in Fourier transform NMR. Modified WEFT pulse sequence. Journal of Magnetic Resonance, 24, 461–465.

    CAS  Google Scholar 

  • Haase, A., Frahm, J., Hanicke, W., & Matthaei, D. (1985). 1H NMR chemical shift selective (CHESS) imaging. Physics in Medicine & Biology, 30, 341–344.

    Article  CAS  Google Scholar 

  • Hoult, D. I. (1976). Solvent peak saturation with single phase and quadrature Fourier transformation. Journal of Magnetic Resonance, 21, 337–347.

    CAS  Google Scholar 

  • Hoult, D. I. (1978). The NMR receiver: A description and analysis of design. Progress in Nuclear Magnetic Resonance Spectrosccopy, 12, 41–77.

    Article  Google Scholar 

  • Hwang, T. L., & Shaka, A. J. (1995). Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. Journal of Magnetic Resonance Series A, 112, 275–279.

    Article  CAS  Google Scholar 

  • Krishnan, V. V., & Murali, N. (2013). Radiation damping in modern NMR experiments: Progress and challenges. Progress in Nuclear Magnetic Resonance Spectrosccopy, 68, 41–57.

    Article  CAS  Google Scholar 

  • Kumar, A., Ernst, R. R., & Wüthrich, K. (1980). A two-dimensional nuclear overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation net-works in biological macromolecules. Biochemical and Biophysical Research Communications, 95, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Kupce, E., & Freeman, R. (1995). Band selective correlation spectroscopy. Journal of Magnetic Resonance, Series A, 112, 134–137.

    Article  CAS  Google Scholar 

  • Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., & Verhoeyen, M. E. (2003). Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agricultural and Food Chemistry, 51, 2447–2456.

    Article  PubMed  Google Scholar 

  • Levitt, M. (1996). Demagnetization field effects in two-dimensional solution NMR. Concept in Magnetic Resonance, 8, 77–103.

    Article  CAS  Google Scholar 

  • Lippens, G., Dhalluin, C., & Wieruszeski, J.-M. (1995). Use of a water flip-back pulse in the homonuclear NOESY experiment. Journal of Biomolecular NMR, 5, 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., & Mao, X. (1999). Solvent suppression methods in NMR spectroscopy. In J. C. Lindon (Ed.), Encyclopedia of spectroscopy and spectrometry (pp. 2145–2152). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Liu, M., Mao, X., Chaohui, Y., Huang, H., Nicholson, J. K., & Lindon, J. C. (1998). Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. Journal of Magnetic Resonance, 132, 125–129.

    Article  CAS  Google Scholar 

  • Mao, X. A., & Chen, J. H. (1996). Radiation damping effects in solvent preirradiation experiments in NMR. Chemical Physics, 202, 357–366.

    Article  CAS  Google Scholar 

  • McKay, R. T. (2009). Recent advances in solvent suppression for solution NMR: A practical reference. Annual Reports on NMR Spectroscopy, 66, 33–76.

    Article  CAS  Google Scholar 

  • McKay, R. T. (2011). How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy: An examination of the pulse sequence components and evolution. Concepts in Magnetic Resonance, 38A, 197–220.

    Article  CAS  Google Scholar 

  • McKenzie, J. S., Donarski, J. A., Wilson, J. C., & Charlton, A. J. (2011). Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics. Progress in Nuclear Magnetic Resonance Spectrosccopy, 59, 336–359.

    Article  CAS  Google Scholar 

  • Menditto, A., Patriarca, M., & Magnusson, B. (2007). Accreditation and quality assurance, 12, 45–47.

    Article  CAS  Google Scholar 

  • Mo, H., & Raftery, D. (2008a). Improved residual water suppression: WET180. Journal of Biomolecular NMR, 41, 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Mo, H., & Raftery, D. (2008b). Pre-SAT180, a simple and effective method for residual water suppression. Journal of Magnetic Resonance, 190, 1–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris, G. A., & Freeman, R. (1978). Selective excitation in fourier transform nuclear magnetic resonance. Journal of Magnetic Resonance, 29, 433–462.

    CAS  Google Scholar 

  • Neuhaus, D., Ismail, I. M., & Chung, C. W. (1996). ‘‘FLIPSY’’—a new solvent-suppression sequence for nonexchanging solutes offering improved integral accuracy relative to 1D NOESY. Journal of Magnetic Resonance Series A, 118, 256–263.

    Article  CAS  Google Scholar 

  • Nguyen, B. D., Meng, X., Donovan, K. J., & Shaka, A. J. (2007). SOGGY: Solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. Journal of Magnetic Resonance, 184, 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, J., & Oliver, S. (2005). The next wave in metabolome analysis. Trends in Biotechnology, 23, 544–546.

    Article  CAS  PubMed  Google Scholar 

  • Ogg, R. J., Kingsely, P. B., & Taylor, J. S. (1994). WET, a T1- and B1- insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. Journal of Magnetic Resonance Series B, 104, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Patt, S. L., & Sykes, B. D. (1972). Water eliminated Fourier transform NMR spectroscopy. Journal of Chemical Physics, 56, 3182–3184.

    Article  CAS  Google Scholar 

  • Pauli, G. F. (2001). qNMR—A versatile concept for the validation of natural product reference compounds. Phytochemical Analysis, 12, 28–42.

    Article  CAS  PubMed  Google Scholar 

  • Piotto, M., Saudek, V., & Sklenár, V. (1992). Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. Journal of Biomolecular NMR, 2, 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Rolin, D., Deborde, C., Maucourt, M., Cabasson, C., Fauvelle, F., Jacob, D., et al. (2013). High-resolution 1H-NMR spectroscopy and beyond to explore plant metabolome. In D. Rolin (Ed.), Metabolomics coming of age with its technological diversity (Vol. 67, pp. 99–158). UK: Academic Press.

    Chapter  Google Scholar 

  • Ross, A., Schlotterbeck, G., Dieterle, F., & Senn, H. (2005). NMR spectroscopy techniques for application to metabonomics. In J. C. Lindon, J. K. Nicholson, & E. Holmes (Eds.), The handbook of metabonomics and metabolomics (pp. 55–112). Amsterdam: Elsevier.

    Google Scholar 

  • Saude, E., Slupsky, C. M., & Sykes, B. D. (2006). Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics, 2, 113–123.

    Article  CAS  Google Scholar 

  • Simpson, A. J., & Brown, S. A. (2005). Purge NMR: Effective and easy solvent suppression. Journal of Magnetic Resonance, 175, 340–346.

    Article  CAS  PubMed  Google Scholar 

  • Sklenar, V., Piotto, M., Leppik, R., & Saudek, V. (1993). Gradient-tailored water suppression for 1H–15N HSQC experiments optimized to retain full sensitivity. Journal of Magnetic Resonance, Series A, 102, 241–245.

    Article  CAS  Google Scholar 

  • Smallcombe, S. H., Patt, S. L., & Keifer, P. A. (1995). WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. Journal of Magnetic Resonance Series A, 117, 295–303.

    Article  CAS  Google Scholar 

  • Sokolenko, S., McKay, R. T., Blondeel, E. J. M., Lewis, M. J., Chang, D., George, B., & Aucoin, M. G. (2013). Understanding the variability of compound quantification from targeted profiling metabolomics of 1D-1H-NMR spectra in synthetic mixtures and urine with additional insights on choice of pulse sequences and robotic sampling. Metabolomics, 9, 887–903.

    Article  CAS  Google Scholar 

  • Suryan, G. (1949). Nuclear magnetic resonance and the effect of the methods of observation. Current Science, 6, 203–204.

    Google Scholar 

  • Tenailleau, E., & Akoka, S. (2007). Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C-NMR. Journal of Magnetic Resonance, 185, 50–58.

    Article  CAS  PubMed  Google Scholar 

  • Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6, 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Van, Q. N., Chmurny, G. N., & Veenstra, T. D. (2003). The depletion of protein signals in metabonomics analysis with the WET-CPMG pulse sequence. Biochemical and Biophysical Research Communications, 301, 952–959.

    Article  CAS  PubMed  Google Scholar 

  • Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Yang, X., & Gorenstein, D. G. (2000). Enhanced suppression of residual water in a ‘‘270’’ WET sequence. Journal of Magnetic Resonance, 143, 382–386.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, G., & Price, W. S. (2010). Solvent signal suppression in NMR. Progress in Nuclear Magnetic Resonance Spectrosccopy, 56, 267–288.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. Illa Tea, Julie Lalande and Estelle Martineau for discussions, as well as to Michel Giraudeau for linguistic assistance. Funding sources (ANR Grant 2010-JCJC-0804-01 and RésoNantes Grant from the Région Pays de la Loire) are also acknowledged, as well as the CORSAIRE platform from Biogenouest.

Conflict of interest

Patrick Giraudeau, Virginie Silvestre, and Serge Akoka declare that they have no conflict of interest.

Compliance with ethical requirements

Patrick Giraudeau, Virginie Silvestre, and Serge Akoka declare that all principles of ethical and professional conduct have been followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Akoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraudeau, P., Silvestre, V. & Akoka, S. Optimizing water suppression for quantitative NMR-based metabolomics: a tutorial review. Metabolomics 11, 1041–1055 (2015). https://doi.org/10.1007/s11306-015-0794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0794-7

Keywords

Navigation