Skip to main content
Log in

A novel approach to identify optimal metabotypes of elongase and desaturase activities in prevention of acute coronary syndrome

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Both metabolomic and genomic approaches are valuable for risk analysis, however typical approaches evaluating differences in means do not model the changes well. Gene polymorphisms that alter function would appear as distinct populations, or metabotypes, from the predominant one, in which case risk is revealed as changed mixing proportions between control and case samples. Here we validate a model accounting for mixed populations using biomarkers of fatty acid metabolism derived from a case/control study of acute coronary syndrome subjects in which both metabolomic and genomic approaches have been used previously. We first used simulated data to show improved power and sensitivity in the approach compared to classic approaches. We then used the metabolic biomarkers to test for evidence of distinct metabotypes and different proportions among cases and controls. In simulation, our model outperformed all other approaches including Mann–Whitney, t tests, and χ 2. Using real data, we found distinct metabotypes of six of the seven activities tested, and different mixing proportions in five of the six activity biomarkers: D9D, ELOVL6, ELOVL5, FADS1, and Sprecher pathway chain shortening (SCS). High activity metabotypes of non-essential fatty acids and SCS decreased odds for acute coronary syndrome, however high activity metabotypes of 20-carbon fatty acid synthesis increased odds. Our study validates an approach that accounts for both metabolomic and genomic theory by demonstrating improved sensitivity and specificity, better performance in real world data, and more straightforward interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aslibekyan, S., et al. (2012). Genetic variation in fatty acid elongases is not associated with intermediate cardiovascular phenotypes or myocardial infarction. European Journal of Clinical Nutrition, 66, 353–359. doi:10.1038/ejcn.2012.2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Assmann, G., Cullen, P., & Schulte, H. (2002). Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation, 105, 310–315.

    Article  PubMed  Google Scholar 

  • Block, R. C., Harris, W. S., Reid, K. J., Sands, S. A., & Spertus, J. A. (2007). EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis, 197, 821–828.

    Article  PubMed  Google Scholar 

  • Broadhurst, D., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.

    Article  CAS  Google Scholar 

  • Chambless, L. E., et al. (2003). Coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC) study. Journal of Clinical Epidemiology, 56, 880–890.

    Article  PubMed  Google Scholar 

  • Cook, N. R. (2007). Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation, 115, 928–935.

    Article  PubMed  Google Scholar 

  • Cook, N. R. (2008). Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve. Clinical Chemistry, 54, 17–23.

    Article  CAS  PubMed  Google Scholar 

  • D’Agostino, R. B, Sr, et al. (2008). General cardiovascular risk profile for use in primary care: The Framingham heart study. Circulation, 117, 743–753.

    Article  PubMed  Google Scholar 

  • De Backer, G., et al. (2004). European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts). Atherosclerosis, 173, 381–391.

    Article  PubMed  Google Scholar 

  • Dumas, M. E. (2012). Metabolome 2.0: Quantitative genetics and network biology of metabolic phenotypes. Molecular BioSystems, 8, 2494–2502. doi:10.1039/c2mb25167a.

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse, S., et al. (2001). Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. Journal of Lipid Research, 42, 1987–1995.

    CAS  PubMed  Google Scholar 

  • Flowers, M. T., & Ntambi, J. M. (2008). Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Current Opinion in Lipidology, 19, 248–256. doi:10.1097/MOL.0b013e3282f9b54d.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Folsom, A. R., et al. (2006). An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: The atherosclerosis risk in communities study. Archives of Internal Medicine, 166, 1368–1373.

    Article  CAS  PubMed  Google Scholar 

  • Fraley, C., Raferty, A. E., Murphy, T. B., & Scrucca, L. (2012). Mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation (4th ed.). Seattle, WA: Department of Statistics, University of Washington.

  • Green, C. D., & Olson, L. K. (2011). Modulation of palmitate-induced endoplasmic reticulum stress and apoptosis in pancreatic beta-cells by stearoyl-CoA desaturase and Elovl6. American Journal of Physiology-Endocrinology and Metabolism, 300, E640–E649. doi:10.1152/ajpendo.00544.2010.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E., Wilson, I. D., & Nicholson, J. K. (2008). Metabolic phenotyping in health and disease. Cell, 134, 714–717. doi:10.1016/j.cell.2008.08.026.

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar, S. M., Lopamudra, P., Padmini, S., Balakrishna, N., Giridharan, N. V., & Vajreswari, A. (2009). Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob. Nutrition and Metabolism, 6, 27. doi:10.1186/1743-7075-6-27.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim, W., Gordon, D., Sebat, J., Ye, K. Q., & Finch, S. J. (2008). Computing power and sample size for case-control association studies with copy number polymorphism: Application of mixture-based likelihood ratio test. PLoS ONE, 3, e3475. doi:10.1371/journal.pone.0003475.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu, K., Luedtke, A., & Tintle, N. (2013a). Optimal methods for using posterior probabilities in association testing. Human Heredity, 75, 2–11. doi:10.1159/000349974.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu, Y., et al. (2013b). Genetic analysis of the ELOVL6 gene polymorphism associated with type 2 diabetes mellitus. Brazilian Journal of Medical and Biological Research, 46, 623–628. doi:10.1590/1414-431X20133103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lloyd-Jones, D. M., Liu, K., Tian, L., & Greenland, P. (2006). Narrative review: Assessment of C-Reactive protein in risk prediction for cardiovascular disease. Annals of internal medicine, 145, 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., et al. (2012). Markers of endogenous desaturase activity and risk of coronary heart disease in the CAREMA cohort study. PLoS ONE, 7, e41681. doi:10.1371/journal.pone.0041681.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuzaka, T., et al. (2012). Elovl6 promotes nonalcoholic steatohepatitis. Hepatology, 56, 2199–2208. doi:10.1002/hep.25932.

    Article  CAS  PubMed  Google Scholar 

  • Mendell, N. R., Finch, S. J., & Thode, H. C, Jr. (1993). Where is the likelihood ratio test powerful for detecting two component normal mixtures? Biometrics, 49, 907–915.

    Article  CAS  PubMed  Google Scholar 

  • Morcillo, S., et al. (2011). ELOVL6 genetic variation is related to insulin sensitivity: A new candidate gene in energy metabolism. PLoS ONE, 6, e21198. doi:10.1371/journal.pone.0021198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan, T. M., Krumholz, H. M., Lifton, R. P., & Spertus, J. A. (2007). Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. The Journal of the American Medical Association 297, 1551–1561. doi:10.1001/jama.297.14.1551.

    Article  CAS  PubMed  Google Scholar 

  • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163. doi:10.2307/271063.

    Article  Google Scholar 

  • Rhee, S. K., Kayani, A. J., Ciszek, A., & Brenna, J. T. (1997). Desaturation and interconversion of dietary stearic and palmitic acids in human plasma and lipoproteins. American Journal of Clinical Nutrition, 65, 451–458.

    CAS  PubMed  Google Scholar 

  • Ridker, P. M., Buring, J. E., Rifai, N., & Cook, N. R. (2007). Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the reynolds risk score. The Journal of the American Medical Association, 297, 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Ridker, P. M., Paynter, N. P., Rifai, N., Gaziano, J. M., & Cook, N. R. (2008). C-Reactive protein and parental history improve global cardiovascular risk prediction. The Reynolds Risk Score for Men. Circulation, 118, 2243–2251.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shearer, G. C., Pottala, J. V., Spertus, J. A., & Harris, W. S. (2009). Red blood cell fatty acid patterns and acute coronary syndrome. PLoS ONE, 4, e5444. doi:10.1371/journal.pone.0005444.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shin, S. Y., et al. (2014). An atlas of genetic influences on human blood metabolites. Nature Genetics, 46, 543–550. doi:10.1038/ng.2982.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sprecher, H. (2000). Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta, 1486, 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Tintle, N. L., et al. (2014). A genome-wide association study of saturated, mono- and poly-unsaturated red blood cell fatty acids in the Framingham Heart Offspring Study. Prostaglandins Leukotrienes and Essential Fatty Acids,. doi:10.1016/j.plefa.2014.11.007.

    Google Scholar 

  • Vasan, R. S. (2006). Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation, 113, 2335–2362.

    Article  PubMed  Google Scholar 

  • Vessby, B., Gustafsson, I. B., Tengblad, S., Boberg, M., & Andersson, A. (2002). Desaturation and elongation of fatty acids and insulin action. Annals of the New York Academy of Sciences, 967, 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Folsom, A. R., & Eckfeldt, J. H. (2003). Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: The Atherosclerosis Risk in Communities (ARIC) Study. Nutrition, Metabolism and Cardiovascular Diseases, 13, 256–266.

    Article  CAS  PubMed  Google Scholar 

  • Warensjo, E., Sundstrom, J., Vessby, B., Cederholm, T., & Riserus, U. (2008). Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: A population-based prospective study. American Journal of Clinical Nutrition, 88, 203–209.

    PubMed  Google Scholar 

  • Westerhuis, J. A., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.

    Article  CAS  Google Scholar 

  • Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97, 1837–1847.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics, 9, 280–299. doi:10.1007/s11306-012-0482-9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge John Spertus and William Harris for their work on the parent Project and in generating the data. Additional support was provided by the USDA Intramural Project 5306-51530-019-00D and the NIH, project 1U24DK097154-01 and R15HG006915. The USDA is an equal opportunity provider and employer.

Conflict of interest

Nathan L. Tintle and John W. Newman declare they have no conflicts. Gregory C. Shearer has received investigator-initiated research grants from the California Walnut Commission. Gregory C. Shearer has received speakership honorarium from Frerrer Gruppo.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Shearer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tintle, N.L., Newman, J.W. & Shearer, G.C. A novel approach to identify optimal metabotypes of elongase and desaturase activities in prevention of acute coronary syndrome. Metabolomics 11, 1327–1337 (2015). https://doi.org/10.1007/s11306-015-0787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0787-6

Keywords

Navigation