Skip to main content
Log in

Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

We investigated the response, adaptation and tolerance mechanisms of the temperate seagrass Zostera marina to water column anoxia. We exposed Z. marina to a diurnal light/dark cycle under anoxia and assessed the metabolic response by measuring the metabolome with gas chromatography coupled to mass spectrometry (GC–MS). During anoxia and light exposure the roots showed an altered metabolome whereas the leaves were only marginally affected, indicating that photosynthetically derived oxygen could satisfy the oxygen demand in the leaves but not in the roots. Nocturnal anoxia caused a biphasic shift in the metabolome of roots and leaves. The first phase, after 15 h under anoxia and 3 h of darkness showed a fast increase of lactate, pyruvate, GABA (γ-aminobutyric acid), succinate, alanine and a decrease in glutamate and glutamine. The second phase, after 21 h under anoxia and 9 h of darkness showed a decrease in lactate and pyruvate and an increase in alanine, GABA and succinate. This reprogramming of the metabolome after 21 h under anoxia indicates a possible mitigation mechanism to avoid the toxic effects of anoxia. A pathway enrichment analysis proposes the alanine shunt, the GABA shunt and the 2-oxoglutarate shunt as such mitigation mechanisms that alleviate pyruvate levels and lead to carbon and nitrogen storage during anoxia. This work demonstrates the applicability of metabolomics to assess low oxygen stress responses of Z. marina and allows us to propose an anoxia recovery model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey-Serres, J., Fukao, T., Gibbs, D. J., Holdsworth, M. J., Lee, S. C., Licausi, F., et al. (2012). Making sense of low oxygen sensing. Trends in Plant Science, 17(3), 129–138. doi:10.1016/j.tplants.2011.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Banti, V., Giuntoli, B., Gonzali, S., Loreti, E., Magneschi, L., Novi, G., et al. (2013). Low oxygen response mechanisms in green organisms. International Journal of Molecular Sciences, 14(3), 4734–4761. doi:10.3390/ijms14034734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blake-Kalff, M. M. A., Harrison, K. R., Hawkesford, M. J., Zhao, F. J., & McGrath, S. P. (1998). Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiology, 118(4), 1337–1344. doi:10.1104/pp.118.4.1337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borum, J., Pedersen, O., Greve, T. M., Frankovich, T. A., Zieman, J. C., Fourqurean, J. W., et al. (2005). The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology, 93(1), 148–158. doi:10.1111/j.1365-2745.2004.00943.x.

    Article  CAS  Google Scholar 

  • Borum, J., Sand-Jensen, K., Binzer, T., Pedersen, O., & Greve, T. M. (2006). Oxygen movement in seagrasses. In A. W. D. Larkum, R. J. Orth, & C. M. Duarte (Eds.), Seagrasses: Biology, ecology and conservation (p. 255). Dordrecht, Netherlands: Springer. doi:10.1007/1-4020-2983-7_10.

    Google Scholar 

  • Bouche, N., & Fromm, H. (2004). GABA in plants: just a metabolite? Trends in Plant Science, 9(3), 110–115. doi:10.1016/j.tplants.2004.01.006.

    Article  CAS  PubMed  Google Scholar 

  • Cline, J. D. (1969). Spectrophotomitric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3), 454–458. doi:10.4319/lo.1969.14.3.0454.

    Article  CAS  Google Scholar 

  • de Sousa, C. A. F., & Sodek, L. (2003). Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environmental and Experimental Botany, 50(1), 1–8. doi:10.1016/S0098-8472(02)00108-9.

    Article  Google Scholar 

  • Dennison, W. C., & Alberte, R. S. (1982). Photosynthetic responses of Zostera marina L. (Eelgrass) to in situ manipulations of light intensity. Oecologia, 55(2), 137–144. doi:10.1007/bf00384478.

    Article  Google Scholar 

  • Dennison, W. C., & Alberte, R. S. (1985). Role of daily light period in the depth distribution of Zostera marina (eelgrass). Marine Ecology Progress Series, 25(1), 51–61. doi:10.3354/meps025051.

    Article  Google Scholar 

  • Frederiksen, M. S., & Glud, R. N. (2006). Oxygen dynamics in the rizosphere of Zostera marina: A two-dimensional planar optode study. Limnology and Oceanography, 51(2), 1072–1083. doi:10.4319/lo.2006.51.2.1072.

    Article  Google Scholar 

  • Frederiksen, M. S., Holmer, M., Borum, J., & Kennedy, H. (2006). Temporal and spatial variation of sulfide invasion in eelgrass (Zostera marina) as reflected by its sulfur isotopic composition. Limnology and Oceanography, 51(5), 2308–2318. doi:10.4319/lo.2006.51.5.2308.

    Article  CAS  Google Scholar 

  • Greve, T. M., Borum, J., & Pedersen, O. (2003). Meristematic oxygen variability in eelgrass (Zostera marina). Limnology and Oceanography, 48(1), 7. doi:10.4319/lo.2003.48.1.0210.

    Article  Google Scholar 

  • Hansen, H. P., & Koroleff, F. (2007). Determination of nutrients. In K. Grasshoff, K. Kremling, & M. Ehrhardt (Eds.), Methods of seawater analysis (3rd ed., pp. 159–228). Weinheim, Germany: Wiley-VCH Verlag GmbH. doi:10.1002/9783527613984.ch10.

    Google Scholar 

  • Holmer, M., & Nielsen, R. M. (2007). Effects of filamentous algal mats on sulfide invasion in eelgrass (Zostera marina). Journal of Experimental Marine Biology and Ecology, 353(2), 245–252. doi:10.1016/j.jembe.2007.09.010.

    Article  CAS  Google Scholar 

  • Kendrick, G. A., Waycott, M., Carruthers, T. J. B., Marion, L. C., Hovey, R., Krauss, S. L., et al. (2012). The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience, 62(1), 56–65. doi:10.1525/bio.2012.62.1.10.

    Article  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: the golm metabolome database. Bioinformatics, 21(8), 1635–1638. doi:10.1093/bioinformatics/bti236.

    Article  CAS  PubMed  Google Scholar 

  • Limami, A. M. (2014). Adaptations of nitrogen metabolism to oxygen deprivation in plants. In J. T. van Dongen & F. Licausi (Eds.), Low-oxygen stress in plants (Vol. 21, pp. 209–221)., Plant cell monographs Vienna, Austria: Springer. doi:10.1007/978-3-7091-1254-0_11.

    Chapter  Google Scholar 

  • Miro, B., & Ismail, A. M. (2013). Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Frontiers in Plant Science, 4, 1–18. doi:10.3389/fpls.2013.00269.

    Article  Google Scholar 

  • Miyashita, Y., & Good, A. G. (2008). Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant and Cell Physiology, 49(1), 92–102. doi:10.1093/pcp/pcm171.

    Article  CAS  PubMed  Google Scholar 

  • Moore, K. A., & Jarvis, J. C. (2008). Environmental factors affecting recent summertime eelgrass diebacks in the lower chesapeake bay: implications for long-term persistence. Journal of Coastal Research,. doi:10.2112/SI55-014.

    Google Scholar 

  • Morgenthal, K., Wienkoop, S., Wolschin, F., & Weckwerth, W. (2007). Integrative profiling of metabolites and proteins metabolomics. In W. Weckwerth (Ed.), Methods in molecular biology (Vol. 358, pp. 57–75). Totowa, NJ: Humana Press. doi:10.1007/978-1-59745-244-1_4.

    Google Scholar 

  • Papenbrock, J. (2012). Highlights in seagrasses’ phylogeny, physiology, and metabolism: What makes them special? ISRN Botany, 2012, 1–15. doi:10.5402/2012/103892.

    Article  Google Scholar 

  • Pedersen, O., Binzer, T., & Borum, J. (2004). Sulphide intrusion in eelgrass (Zostera marina L.). Plant, Cell and Environment, 27(5), 595–602. doi:10.1111/J.1365-3040.2004.01173.X.

    Article  CAS  Google Scholar 

  • Penhale, P. A., & Wetzel, R. G. (1983). Structural and functional adaptations of eelgrass (Zostera marina L.) to the anaerobic sediment environment. Canadian Journal of Botany, 61(5), 1421–1428. doi:10.1139/b83-153.

    Article  Google Scholar 

  • Plus, M., Deslous-Paoli, J. M., & Dagault, F. (2003). Seagrass (Zostera marina L.) bed recolonisation after anoxia-induced full mortality. Aquatic Botany, 77(2), 121–134. doi:10.1016/s0304-3770(03)00089-5.

    Article  Google Scholar 

  • Pregnall, A. M. (2004). Effects of aerobic versus anoxic conditions on glutamine synthetase activity in eelgrass (Zostera marina L.) roots: Regulation of ammonium assimilation potential. Journal of Experimental Marine Biology and Ecology, 311(1), 11–24. doi:10.1016/j.jembe.2004.04.013.

  • Pregnall, A. M., Smith, R. D., Kursar, T. A., & Alberte, R. S. (1984). Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia. Marine Biology, 83(2), 141–147. doi:10.1007/BF00394721.

    Article  CAS  Google Scholar 

  • Pulido, C., & Borum, J. (2010). Eelgrass (Zostera marina) tolerance to anoxia. Journal of Experimental Marine Biology and Ecology, 385(1–2), 8–13. doi:10.1016/j.jembe.2010.01.014.

    Article  Google Scholar 

  • Raun, A. L., & Borum, J. (2013). Combined impact of water column oxygen and temperature on internal oxygen status and growth of Zostera marina seedlings and adult shoots. Journal of Experimental Marine Biology and Ecology, 441, 16–22. doi:10.1016/j.jembe.2013.01.014.

    Article  Google Scholar 

  • Rocha, M., Licausi, F., Araujo, W. L., Nunes-Nesi, A., Sodek, L., Fernie, A. R., et al. (2010). Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiology, 152(3), 1501–1513. doi:10.1104/pp.109.150045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shelp, B. J., Bown, A. W., & McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446–452. doi:10.1016/S1360-1385(99)01486-7.

    Article  PubMed  Google Scholar 

  • Short, F. T., Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 350(1–2), 3–20. doi:10.1016/j.jembe.2007.06.012.

    Article  Google Scholar 

  • Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Bujang, J. S., et al. (2011). Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144, 1961–1971. doi:10.1016/j.biocon.2011.04.010.

    Article  Google Scholar 

  • Smith, R. D. (1989). Anaerobic Metabolism in the Roots of the Seagrass Zostera Marina L. PhD dissertation. The University of Chicago, Chicago, Illinios, USA.

  • Smith, R. D., Pregnall, A. M., & Alberte, R. S. (1988). Effects of anaerobiosis on root metabolism of Zostera marina (eelgrass): implications for survival in reducing sediments. Marine Biology, 98(1), 131–141. doi:10.1007/BF00392668.

    Article  CAS  Google Scholar 

  • Solorzano, L. (1969). Determination of ammonia in natural waters by the phenol hypochlorite method. Limnology and Oceanography, 14(5), 799–801. doi:10.2307/2834079.

    Article  CAS  Google Scholar 

  • Stitt, M., Müller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., et al. (2002). Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany, 53(370), 959–970. doi:10.1093/jexbot/53.370.959.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. doi:10.1007/s11306-007-0082-2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun, X., & Weckwerth, W. (2012). COVAIN: A toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics, 8(1), 81–93. doi:10.1007/s11306-012-0399-3.

    Article  CAS  Google Scholar 

  • Terrados, J., Duarte, C. M., Kamp-Nielsen, L., Agawin, N. S. R., Gacia, E., Lacap, D., et al. (1999). Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquatic Botany, 65(1–4), 175–197. doi:10.1016/S0304-3770(99)00039-X.

    Article  Google Scholar 

  • Touchette, B. W., & Burkholder, J. M. (2000). Overview of the physiological ecology of carbon metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology, 250(1–2), 169–205. doi:10.1016/s0022-0981(00)00196-9.

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth, W., Wenzel, K., & Fiehn, O. (2004). Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics, 4(1), 78–83. doi:10.1002/pmic.200200500.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760. doi:10.1038/nprot.2011.319.

    Article  CAS  PubMed  Google Scholar 

  • Zabalza, A., van Dongen, J. T., Froehlich, A., Oliver, S. N., Faix, B., Gupta, K. J., et al. (2009). Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiology, 149(2), 1087–1098. doi:10.1104/pp.108.129288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman, R. C., Kohrs, D. G., Steller, D. L., & Alberte, R. S. (1995). Carbon partitioning in eelgrass (regulation by photosynthesis and the response to daily light–dark cycles). Plant Physiology, 108(4), 1665–1671. doi:10.1104/pp.108.4.1665.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to the staff of the eco-lab at the University of Southern Denmark for assistance in sample analysis of nutrients. We are in depth of Raymond P. Cox for proof-reading and editing this papers and also of Zeljko Jovanovic for his help during the initial preparations of the experiment. We thank the anonymous reviewers for their valuable comments. Harald Hasler-Sheetal was funded by the Danish Council of Independent Research (Grant No. 09-067485) and Marianne Holmer from Danish National Research foundation (Grant No. 12-127012).

Conflict of interest

H. Hasler-Sheetal, L. Fragner, M. Holmer and W. Weckwerth declare that they have no conflict of interest.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hasler-Sheetal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasler-Sheetal, H., Fragner, L., Holmer, M. et al. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina . Metabolomics 11, 1208–1218 (2015). https://doi.org/10.1007/s11306-015-0776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0776-9

Keywords

Navigation