Skip to main content
Log in

Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The anti-malarial drug artesunate possesses anti-inflammatory and anti-oxidative actions in experimental asthma, comparable to corticosteroid. We hypothesized that artesunate may modulate disease-relevant metabolic alterations in allergic asthma. To explore metabolic profile changes induced by artesunate in allergic airway inflammation, we analysed bronchoalveolar lavage fluid (BALF) and serum from naïve and ovalbumin-induced asthma mice treated with artesunate, using both gas and liquid chromatography-mass spectrometry metabolomics. Pharmacokinetics analyses of serum and lung tissues revealed that artesunate is rapidly converted into the active metabolite dihydroartemisinin. Artesunate effectively suppressed BALF total and differential counts, and repressed BALF Th2 cytokines, IL-17, IL-12(p40), MCP-1 and G-CSF levels. Artesunate had no effects on both BALF and serum metabolome in naïve mice. Artesunate promoted restoration of BALF sterols (cholesterol, cholic acid and cortol), phosphatidylcholines and carbohydrates (arabinose, mannose and galactose) and of serum 18-oxocortisol, galactose, glucose and glucouronic acid in asthma. Artesunate prevented OVA-induced increases in pro-inflammatory metabolites from arginine–proline metabolic pathway, particularly BALF levels of urea and alanine and serum levels of urea, proline, valine and homoserine. Multiple statistical correlation analyses revealed association between altered BALF and serum metabolites and inflammatory cytokines. Dexamethasone failed to reduce urea level and caused widespread changes in metabolites irrelevant to asthma development. Here we report the first metabolome profile of artesunate treatment in experimental asthma. Artesunate restored specific metabolic perturbations in airway inflammation, which correlated well with its anti-inflammatory actions. Our metabolomics findings further strengthen the therapeutic value of using artesunate to treat allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbul, A. (2008). Proline precursors to sustain mammalian collagen synthesis. Journal of Nutrition, 138(10), 2021S–2024S.

    CAS  PubMed  Google Scholar 

  • Cheng, C., Ho, W. E., Goh, F. Y., Guan, S. P., Kong, L. R., Lai, W. Q., et al. (2011). Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS ONE, 6(6), e20932.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng, C., Ng, D. S., Chan, T. K., Guan, S. P., Ho, W. E., Koh, A. H., et al. (2013). Anti-allergic action of anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy, 68(2), 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Dai, C. L., Yao, X. L., Keeran, K. J., Zywicke, G. J., Qu, X., Yu, Z. X., et al. (2012). Apolipoprotein A-I attenuates ovalbumin-induced neutrophilic airway inflammation via a granulocyte colony-stimulating factor-dependent mechanism. American Journal of Respiratory Cell and Molecular Biology, 47(2), 186–195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fessler, M. B., Massing, M. W., Spruell, B., Jaramillo, R., Draper, D. W., Madenspacher, J. H., et al. (2009). Novel relationship of serum cholesterol with asthma and wheeze in the United States. Journal of Allergy and Clinical Immunology, 124(5), 967–974.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho, W. E., Cheng, C., Peh, H. Y., Xu, F., Tannenbaum, S. R., Ong, C. N., et al. (2012). Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radical Biology & Medicine, 53(3), 498–507.

    Article  CAS  Google Scholar 

  • Ho, W. E., Peh, H. Y., Chan, T. K., & Wong, W. S. F. (2014a). Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacology & Therapeutics, 142(1), 126–139.

    Article  CAS  Google Scholar 

  • Ho, W. E., Xu, Y.-J., Cheng, C., Peh, H. Y., Tannenbaum, S. R., Wong, W. S. F., et al. (2014b). Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house dust mite-induced allergic asthma. Journal of Proteome Research. doi:10.1021/pr5003615.

  • Ho, W. E., Xu, Y. J., Xu, F., Cheng, C., Peh, H. Y., Tannenbaum, S. R., et al. (2013). Metabolomics reveals altered metabolic pathways in experimental asthma. American Journal of Respiratory Cell and Molecular Biology, 48(2), 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.-S., Huang, W.-C., Li, C.-W., & Chuang, L.-T. (2011). Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Molecular and Cellular Biochemistry, 358(1–2), 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Li, B., Zheng, X., Liu, X., Cen, Y., Li, J., et al. (2011). Artesunate in combination with oxacillin protect sepsis model mice challenged with lethal live methicillin-resistant Staphylococcus aureus (MRSA) via its inhibition on proinflammatory cytokines release and enhancement on antibacterial activity of oxacillin. International Immunopharmacology, 11(8), 1065–1073.

    Article  CAS  PubMed  Google Scholar 

  • Jin, O., Zhang, H., Gu, Z., Zhao, S., Xu, T., Zhou, K., et al. (2009). A pilot study of the therapeutic efficacy and mechanism of artesunate in the MRL/lpr murine model of systemic lupus erythematosus. Cellular & Molecular Immunology, 6(6), 461–467.

    Article  CAS  Google Scholar 

  • Jung, J., Kim, S.-H., Lee, H.-S., Choi, G. S., Jung, Y.-S., Ryu, D. H., et al. (2013). Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clinical and Experimental Allergy, 43(4), 425–433.

    Article  CAS  PubMed  Google Scholar 

  • Lara, A., Khatri, S. B., Wang, Z., Comhair, S. A., Xu, W., Dweik, R. A., et al. (2008). Alterations of the arginine metabolome in asthma. American Journal of Respiratory and Critical Care Medicine, 178(7), 673–681.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, B., Li, J., Pan, X., Ding, G., Cao, H., Jiang, W., et al. (2010). Artesunate protects sepsis model mice challenged with Staphylococcus aureus by decreasing TNF-alpha release via inhibition TLR2 and Nod2 mRNA expressions and transcription factor NF-kappaB activation. International Immunopharmacology, 10(3), 344–350.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Wang, S., Wang, Y., Zhou, C., Chen, G., Shen, W., et al. (2013). Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Translational Research, 161(2), 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Marescau, B., De Deyn, P. P., Lowenthal, A., Qureshi, I. A., Antonozzi, I., Bachmann, C., et al. (1990). Guanidino compound analysis as a complementary diagnostic parameter for hyperargininemia: Follow-up of guanidino compound levels during therapy. Pediatric Research, 27(3), 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Mattarucchi, E., Baraldi, E., & Guillou, C. (2012). Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomedical Chromatography, 26(1), 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, A. K., Arora, N., Gaur, S. N., & Singh, B. P. (2009). Choline supplementation reduces oxidative stress in mouse model of allergic airway disease. European Journal of Clinical Investigation, 39(10), 934–941.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, A. K., Singh, B. P., Arora, N., & Gaur, S. N. (2010). Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma. Immunobiology, 215(7), 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Meurs, H., McKay, S., Maarsingh, H., Hamer, M. A. M., Macic, L., Molendijk, N., et al. (2002). Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. British Journal of Pharmacology, 136(3), 391–398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyts, I., Hellings, P. W., Hens, G., Vanaudenaerde, B. M., Verbinnen, B., Heremans, H., et al. (2006). IL-12 contributes to allergen-induced airway inflammation in experimental asthma. Journal of Immunology, 177(9), 6460–6470.

    Article  CAS  Google Scholar 

  • Mirshafiey, A., Saadat, F., Attar, M., Di Paola, R., Sedaghat, R., & Cuzzocrea, S. (2006). Design of a new line in treatment of experimental rheumatoid arthritis by artesunate. Immunopharmacology and Immunotoxicology, 28(3), 397–410.

    Article  CAS  PubMed  Google Scholar 

  • Morris, C. A., Duparc, S., Borghini-Fuhrer, I., Jung, D., Shin, C. S., & Fleckenstein, L. (2011). Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malaria Journal, 10, 263.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newton, P., Suputtamongkol, Y., Teja-Isavadharm, P., Pukrittayakamee, S., Navaratnam, V., Bates, I., et al. (2000). Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrobial Agents and Chemotherapy, 44(4), 972–977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ng, D. P. K., Salim, A., Liu, Y., Zou, L., Xu, F. G., Huang, S., et al. (2012). A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus. Diabetologia, 55(2), 499–508.

    Article  CAS  PubMed  Google Scholar 

  • Peebles, R. S., Togias, A., Bickel, C. A., Diemer, F. B., Hubbard, W. C., & Schleimer, R. P. (2000). Endogenous glucocorticoids and antigen-induced acute and late phase pulmonary responses. Clinical and Experimental Allergy, 30(9), 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  • Peters, M., Kauth, M., Scherner, O., Gehlhar, K., Steffen, I., Wentker, P., et al. (2010). Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. Journal of Allergy and Clinical Immunology, 126(3), 648–656.

    Article  CAS  PubMed  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. doi:10.1186/1471-2105-11-395.

    PubMed Central  PubMed  Google Scholar 

  • Ried, J. S., Baurecht, H., Stuckler, F., Krumsiek, J., Gieger, C., Heinrich, J., et al. (2013). Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy, 68(5), 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Saude, E. J., Obiefuna, I. P., Somorjai, R. L., Ajamian, F., Skappak, C., Ahmad, T., et al. (2009). Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. American Journal of Respiratory and Critical Care Medicine, 179(1), 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Saude, E. J., Skappak, C. D., Regush, S., Cook, K., Ben-Zvi, A., Becker, A., et al. (2011). Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. Journal of Allergy and Clinical Immunology, 127(3), 757–764 e, 751–756.

  • Sell, D. R., Strauch, C. M., Shen, W., & Monnier, V. M. (2007). 2-Aminoadipic acid is a marker of protein carbonyl oxidation in the aging human skin: Effects of diabetes, renal failure and sepsis. Biochemical Journal, 404, 269–277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serrano-Mollar, A., & Closa, D. (2005). Arachidonic acid signaling in pathogenesis of allergy: Therapeutic implications. Current Drug Targets—Inflammation & Allergy, 4(2), 151–155.

    Article  CAS  Google Scholar 

  • Smith, C. B., & Sun, Y. (1995). Influence of valine flooding on channeling of valine into tissue pools and on protein synthesis. American Journal of Physiology, 268(4 Pt 1), E735–E744.

    CAS  PubMed  Google Scholar 

  • Tan, S. S. L., Ong, B., Cheng, C., Ho, W. E., Tam, J. K. C., Stewart, A. G., et al. (2013). The antimalarial drug artesunate inhibits primary human cultured airway smooth muscle cell proliferation. American Journal of Respiratory Cell and Molecular Biology, 50(2), 451–458.

    Google Scholar 

  • Teja-Isavadharm, P., Watt, G., Eamsila, C., Jongsakul, K., Li, Q., Keeratithakul, G., et al. (2001). Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. American Journal of Tropical Medicine and Hygiene, 65(6), 717–721.

    CAS  PubMed  Google Scholar 

  • Weber, N., Richter, K.-D., Schulte, E., & Mukherjee, K. D. (1995). Petroselinic acid from dietary triacylglycerols reduces the concentration of arachidonic acid in tissue lipids of rats. Journal of Nutrition, 125(6), 1563–1568.

    CAS  PubMed  Google Scholar 

  • Weeda, E., de Kort, C. A. D., & Beenakkers, A. M. T. (1980). Oxidation of proline and pyruvate by flight muscle mitochondria of the Colorado beetle, Leptinotarsa decemlineata say. Insect Biochemistry, 10(3), 305–311.

  • Wright, S. M., Hockey, P. M., Enhorning, G., Strong, P., Reid, K. B. M., Holgate, S. T., et al. (2000). Altered airway surfactant phospholipid composition and reduced lung function in asthma. Journal of Applied Physiology, 89(4), 1283–1292.

    CAS  PubMed  Google Scholar 

  • Xu, Y.-J., Wang, C., Ho, W. E., & Ong, C. N. (2014). Recent developments and applications of metabolomics in microbiological investigations. TrAC Trends in Analytical Chemistry, 56, 37–48.

    Article  CAS  Google Scholar 

  • Xu, X. L., Xie, Q. M., Shen, Y. H., Jiang, J. J., Chen, Y. Y., Yao, H. Y., et al. (2008). Mannose prevents lipopolysaccharide-induced acute lung injury in rats. Inflammation Research, 57(3), 104–110.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F. G., Zou, L., & Ong, C. N. (2009). Multiorigination of chromatographic peaks in derivatized GC/MS metabolomics: A confounder that influences metabolic pathway interpretation. Journal of Proteome Research, 8(12), 5657–5665.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Choon Nam Ong or W. S. Fred Wong.

Additional information

Wanxing Eugene Ho and Yong-Jiang Xu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, W.E., Xu, YJ., Xu, F. et al. Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma. Metabolomics 11, 380–390 (2015). https://doi.org/10.1007/s11306-014-0699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0699-x

Keywords

Navigation