Metabolomics

, Volume 11, Issue 2, pp 350–366

Parasitoid venom induces metabolic cascades in fly hosts

  • Mrinalini
  • Aisha L. Siebert
  • Jeremy Wright
  • Ellen Martinson
  • David Wheeler
  • John H. Werren
Original Article

DOI: 10.1007/s11306-014-0697-z

Cite this article as:
Mrinalini, Siebert, A.L., Wright, J. et al. Metabolomics (2015) 11: 350. doi:10.1007/s11306-014-0697-z

Abstract

Parasitoid wasps inject insect hosts with a cocktail of venoms to manipulate the physiology, development, and immunity of the hosts and to promote development of the parasitoid offspring. The jewel wasp Nasonia vitripennis is a model parasitoid with at least 79 venom proteins. We conducted a high-throughput analysis of Nasonia venom effects on temporal changes of 249 metabolites in pupae of the flesh fly host (Sarcophaga bullata), over a 5-day time course. Our results show that venom does not simply arrest the metabolism of the fly host. Rather, it targets specific metabolic processes while keeping hosts alive for at least 5 days post venom injection by the wasp. We found that venom: (a) activates the sorbitol biosynthetic pathway while maintaining stable glucose levels, (b) causes a shift in intermediary metabolism by switching to anaerobic metabolism and blocking the tricarboxylic acid cycle, (c) arrests chitin biosynthesis that likely reflects developmental arrest of adult fly structures, (d) elevates the majority of free amino acids, and (e) may be increasing phospholipid degradation. Despite sharing some metabolic effects with cold treatment, diapause, and hypoxia, the venom response is distinct from these conditions. Because Nasonia venom dramatically increases sorbitol levels without changing glucose levels, it could be a useful model for studying the regulation of the sorbitol pathway, which is relevant to diabetes research. Our findings generally support the view that parasitoid venoms are a rich source of bioactive molecules with potential biomedical applications.

Keywords

Venom Nasonia Sorbitol Anaerobic respiration Chitin Amino acids 

Supplementary material

11306_2014_697_MOESM1_ESM.jpg (140 kb)
Supplementary material 1 (JPEG 140 kb)
11306_2014_697_MOESM2_ESM.jpg (986 kb)
Supplementary material 2 (JPEG 986 kb)
11306_2014_697_MOESM3_ESM.jpg (222 kb)
Supplementary material 3 (JPEG 222 kb)
11306_2014_697_MOESM4_ESM.jpg (323 kb)
Supplementary material 4 (JPEG 322 kb)
11306_2014_697_MOESM5_ESM.jpg (2.1 mb)
Supplementary material 5 (JPEG 2192 kb)
11306_2014_697_MOESM6_ESM.jpg (390 kb)
Supplementary material 6 (JPEG 389 kb)
11306_2014_697_MOESM7_ESM.docx (106 kb)
Supplementary material 7 (DOCX 106 kb)
11306_2014_697_MOESM8_ESM.docx (30 kb)
Supplementary material 8 (DOCX 30 kb)
11306_2014_697_MOESM9_ESM.docx (18 kb)
Supplementary material 9 (DOCX 19 kb)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mrinalini
    • 1
  • Aisha L. Siebert
    • 2
  • Jeremy Wright
    • 3
  • Ellen Martinson
    • 1
  • David Wheeler
    • 4
  • John H. Werren
    • 1
  1. 1.Biology DepartmentUniversity of RochesterRochesterUSA
  2. 2.Translational Biomedical Science DepartmentUniversity of Rochester School of Medicine and DentistryRochesterUSA
  3. 3.Research and Collections DivisionNew York State MuseumAlbanyUSA
  4. 4.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations