Skip to main content
Log in

Combining an in vitro reporter gene assay with metabolomics to identify tomato phytochemicals responsible for inducing electrophile-responsive element (EpRE)-mediated gene transcription

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The electrophile-responsive element (EpRE) is a transcriptional enhancer involved in cancer-chemoprotective gene expression effects of certain dietary compounds. In this study we measured the ability of extracts of glycosidase treated tomato fruits from 97 different accessions to induce EpRE-mediated luciferase expression using EpRE-LUX reporter cells and analyzed the same extracts using LC–MS-based untargeted metabolomics profiling. We were able to pinpoint those tomato compounds that were most correlated with EpRE-mediated luciferase induction, by combining reporter gene assay data with the metabolic profiles of the same extracts. Flavonoids were the compounds showing the strongest positive correlation with EpRE-LUX activity. These results were validated using a transgenic tomato line accumulating high levels of flavonoids. Results obtained corroborated that flavonoids are an important determinant of the ability of tomato fruit extracts to induce EpRE-mediated beneficial health effects. Overall, these results indicate that combining untargeted metabolomics with reporter gene assays provides a powerful tool for nutritionists, plant breeders and food chemists towards identification of potential health-beneficial constituents of tomato fruits, as well as of other crops and products derived thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, S., & Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, 163, 739–744.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bino, R. J., et al. (2005). The light-hyperresponsive high pigment-2dg mutation of tomato: Alterations in the fruit metabolome. New Phytologist, 166, 427–438.

    Article  CAS  PubMed  Google Scholar 

  • Boerboom, A. M. J. F., et al. (2006). Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity. Biochemical Pharmacology, 72, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Bovy, A. G., Gómez-Roldán, V., & Hall, R. D. (2010). Strategies to optimize the flavonoid content of tomato fruit. In C. Santos-Buelga, M.-T. Escribano-Bailon, & V. Lattanzio (Eds.), Recent advances in polyphenol research (pp. 138–162). London: Wiley.

    Google Scholar 

  • Bovy, A., Schijlen, E., & Hall, R. (2007). Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): The potential for metabolomics. Metabolomics, 3, 399–412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Butelli, E., et al. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26, 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, J. K., Canene-Adams, K., Lindshield, B. L., Boileau, T. W. M., Clinton, S. K., & Erdman, J. W, Jr. (2004). Tomato phytochemicals and prostate cancer risk. Journal of Nutrition, 134, 3486S–3492S.

    CAS  PubMed  Google Scholar 

  • Chen, C., & Kong, A. N. T. (2004). Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radical Biology & Medicine, 36, 1505–1516.

    Article  CAS  Google Scholar 

  • Day, A. J., et al. (1998). Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver [beta]-glucosidase activity. FEBS Letters, 436, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • de Vos, R. C. H., Hall, R. D., & Moing, A. (2011). Metabolomics of a model fruit: Tomato annual plant reviews (Vol. 43, pp. 109–155). Oxford: Wiley.

    Book  Google Scholar 

  • De Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.

    Article  PubMed  Google Scholar 

  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18, 1818–1892.

    Article  Google Scholar 

  • Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics,. doi:10.1155/2007/64358.

    Google Scholar 

  • George, B., Kaur, C., Khurdiya, D. S., & Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chemistry, 84, 45–51. doi:10.1016/S0308-8146(03)00165-1.

    Article  CAS  Google Scholar 

  • Gijsbers, L., et al. (2012). Induction of electrophile-responsive element (EpRE)-mediated gene expression by tomato extracts in vitro. Food Chemistry, 135, 1166–1172.

    Article  CAS  PubMed  Google Scholar 

  • Gijsbers, L., et al. (2013). Induction of peroxisome proliferator-activated receptor γ (PPARγ)-mediated gene expression by tomato (Solanum lycopersicum L.) extracts. Journal of Agricultural and Food Chemistry, 61, 3419–3427.

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci, E. (1999). Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. Journal of the National Cancer Institute, 91, 317–331.

    Article  CAS  PubMed  Google Scholar 

  • Hollman, P. C. H., et al. (2011). The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. Journal of Nutrition, 141, 989S–1009S.

    Article  CAS  PubMed  Google Scholar 

  • Lee-Hilz, Y. Y., Boerboom, A. M. J. F., Westphal, A. H., Van Berkel, W. J. H., Aarts, J. M. M. J. G., & Rietjens, I. M. C. M. (2006). Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chemical Research in Toxicology, 19, 1499–1505.

    Article  CAS  PubMed  Google Scholar 

  • Levin, I., et al. (2006). High pigment tomato mutants—More than just lycopene (a review). Israel Journal of Plant Sciences, 54, 179–190.

    Article  CAS  Google Scholar 

  • Linnewiel, K., et al. (2009). Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radical Biology & Medicine, 47, 659–667.

    Article  CAS  Google Scholar 

  • Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal of Clinical Nutrition, 78, 517S–520S.

    CAS  PubMed  Google Scholar 

  • Mintz-Oron, S., et al. (2008). Gene expression and metabolism in tomato fruit surface tissues. Plant Physiology, 147, 823–851. doi:10.1104/pp.108.116004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moco, S., et al. (2006). A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology, 141, 1205–1218.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moco, S., et al. (2007). Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 58, 4131–4146.

    Article  CAS  PubMed  Google Scholar 

  • Németh, K., et al. (2003). Deglycosylation by small intestinal epithelial cell Î2-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. European Journal of Nutrition, 42, 29–42.

    Article  PubMed  Google Scholar 

  • Osorio, S., et al. (2011). Systems biology of tomato fruit development: Combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiology, 157, 405–425.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paran, I., & van der Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58, 3841–3852. doi:10.1093/jxb/erm257.

    Article  CAS  PubMed  Google Scholar 

  • Rein, D., et al. (2006). Transgenic flavonoid tomato intake reduces C-reactive protein in human C-reactive protein transgenic mice more than wild-type tomato. Journal of Nutrition, 136, 2331–2337.

    CAS  PubMed  Google Scholar 

  • Schijlen, E., et al. (2006). Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnology Journal, 4, 433–444.

    Article  CAS  PubMed  Google Scholar 

  • Tikunov, Y. M., Laptenok, S., Hall, R. D., Bovy, A., & de Vos, R. C. H. (2011). MSClust: A tool for unsupervised mass spectra extraction of chromatography-mass spectrometry ion-wise aligned data. Metabolomics, 8, 1–5.

    Google Scholar 

  • van Dorsten, F. A., et al. (2012). Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. Journal of Agricultural and Food Chemistry, 60, 11331–11342. doi:10.1021/jf303165w.

    Article  PubMed  Google Scholar 

  • Yamanaka, T., Vincken, J. P., Zuilhof, H., Legger, A., Takada, N., & Gruppen, H. (2009). C22 isomerization in α-tomatine-to-esculeoside a conversion during tomato ripening is driven by C27 hydroxylation of triterpenoidal skeleton. Journal of Agricultural and Food Chemistry, 57, 3786–3791.

    Article  CAS  PubMed  Google Scholar 

Web References

Download references

Acknowledgments

This work was financially supported by the Food and Nutrition Delta Grant no. FND07007. We thank Syngenta for providing the tomato accessions. We thank Bert Schipper for excellent handling of the LC–MS instrument. AGB, YMT and RCHdV acknowledge the Centre for Biosystems Genomics, while RCHdV also acknowledges the Netherlands Metabolomics Centre for additional funding. Both Centers are part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriëtte D. L. M. van Eekelen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Principal components analysis of untargeted LC–MS data from the all tomato accessions. Tomato accessions that showed either highest or lowest EpRE-mediated luciferase induction are marked red and green, respectively. Clustering of these tomato accessions along the first three principal components (PC): PC1, PC2, and PC3 explains 34.8, 9.8, and 6.5 % of the total metabolic variation (JPEG 40 kb)

Supplemental Fig. 2

Scatter plots of log-transformed and mean-centered peak intensities over all 93 tomato accessions of quercetin-glycosides versus quercetin aglycone (JPEG 62 kb)

Supplemental Fig. 3

Scatter plot of log-transformed and mean-centred peak intensities over all 93 tomato accessions of tri caffeoylquinic acid versus quercetin aglycone (JPEG 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Eekelen, H.D.L.M., Gijsbers, L., Maliepaard, C.A. et al. Combining an in vitro reporter gene assay with metabolomics to identify tomato phytochemicals responsible for inducing electrophile-responsive element (EpRE)-mediated gene transcription. Metabolomics 11, 302–311 (2015). https://doi.org/10.1007/s11306-014-0694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0694-2

Keywords

Navigation