Skip to main content

Advertisement

Log in

Application of gas chromatography mass spectrometry (GC–MS) in conjunction with multivariate classification for the diagnosis of gastrointestinal diseases

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Gastrointestinal diseases such as irritable bowel syndrome, Crohn’s disease (CD) and ulcerative colitis are a growing concern in the developed world. Current techniques for diagnosis are often costly, time consuming, inefficient, of great discomfort to the patient, and offer poor sensitivities and specificities. This paper describes the development and evaluation of a new methodology for the non-invasive diagnosis of such diseases using a combination of gas chromatography mass spectrometry (GC–MS) and chemometrics. Several potential sample matrices were tested: blood, breath, faeces and urine. Faecal samples provided the only statistically significant results, providing discrimination between CD and healthy controls with an overall classification accuracy of 85 % (78 % specificity; 93 % sensitivity). Differentiating CD from other diseases proved more challenging, with overall classification accuracy dropping to 79 % (83 % specificity; 68 % sensitivity). This diagnostic performance compares well with the gold standard technique of colonoscopy, suggesting that GC–MS may have potential as a non-invasive screening tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham, C., & Cho, J. H. (2009). Inflammatory bowel disease. New England Journal of Medicine, 361(21), 2066–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angriman, I., Scarpa, M., et al. (2007). Enzymes in feces: Useful markers of chronic inflammatory bowel disease. Clinica Chimica Acta, 381(1), 63–68.

    Article  CAS  Google Scholar 

  • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173.

    Article  CAS  Google Scholar 

  • Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Chichester: Wiley.

    Book  Google Scholar 

  • Brereton, R. G. (2009). Chemometrics for pattern recognition. Chichester: Wiley.

    Book  Google Scholar 

  • Campbell, M. J., & Machin, D. (1999). Medical statistics: A common sense approach. Chichester: Wiley.

    Google Scholar 

  • de Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18(3), 251–263.

    Article  Google Scholar 

  • Farrell, R. J., Banerjee, S., et al. (2001). Recent advances in inflammatory bowel disease. Critical Reviews in Clinical Laboratory Sciences, 38(1), 33–108.

    Article  CAS  PubMed  Google Scholar 

  • Fefferman, D. S., & Farrell, R. J. (2005). Endoscopy in inflammatory bowel disease: Indications, surveillance and use in clinical practice. Clinical Gastroenterology and Hepatology, 3, 11–24.

    Article  PubMed  Google Scholar 

  • Hagan, M. T., Demuth, H. B., et al. (1996). Neural network design. Boston: International Thompson Publishing.

    Google Scholar 

  • Hotelling, H. (1931). The generalization of student’s ratio. Annals of Mathematics and Statistics, 2(3), 360–378.

    Article  Google Scholar 

  • Kussmann, M., Raymond, F., et al. (2006). OMICS-driven biomarker discovery in nutrition and health. Journal of Biotechnology, 124(4), 758–787.

    Article  CAS  PubMed  Google Scholar 

  • Langhorst, J., Kühle, C. A., et al. (2007). MR colonography without bowel purgation for the assessment of inflammatory bowel diseases: Diagnostic accuracy and patient acceptance. Inflammatory Bowel Diseases, 13(8), 1001–1008.

    Article  PubMed  Google Scholar 

  • Lavine, B., & Workman, J. J. (2004). Chemometrics. Analytical Chemistry, 76(12), 3365–3372.

    Article  CAS  PubMed  Google Scholar 

  • Lechner, M., Colvin, H. P., et al. (2005). Headspace screening of fluid obtained from the gut during colonoscopy and breath analysis by proton transfer reaction–mass spectrometry: A novel approach in the diagnosis of gastro-intestinal diseases. International Journal of Mass Spectrometry, 243(2), 151–154.

    Article  CAS  Google Scholar 

  • Makidono, C., Mizuno, M., et al. (2004). Increased serum concentrations and surface expression on peripheral white blood cells of decay-accelerating factor (cd55) in patients with active ulcerative colitis. Journal of Laboratory and Clinical Medicine, 143(3), 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Manes, G., Imbesi, V., et al. (2009). Use of colonoscopy in the management of patients with Crohn’s disease: Appropriateness and diagnostic yield. Digestive and Liver Disease, 41(9), 653–658.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza, J. L., & Abreu, M. T. (2009). Biological markers in inflammatory bowel disease: Practical consideration for clinicians. Gastroentérologie Clinique et Biologique, 33(Supplement 3), S158–S173.

    Article  CAS  PubMed  Google Scholar 

  • Moum, B., Ekbom, A., et al. (1997). Inflammatory bowel disease: Re-evaluation of the diagnosis in a prospective population based study in south eastern Norway. Gut, 40, 328–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, R. M., & Barry, M. (2001). Serologic markers in inflammatory bowel disease (IBD). Medical Laboratory Observations, 33, 8–15.

    CAS  Google Scholar 

  • Nakamura, R. M., Matsutani, M., et al. (2003). Advances in clinical laboratory tests for inflammatory bowel disease. Clinica Chimica Acta, 335(1–2), 9–20.

    Article  CAS  Google Scholar 

  • Otto, M. (1999). Chemometrics: statistics and computer applications in analytical chemistry. Germany: Wiley.

    Google Scholar 

  • Papadakis, K. A., & Targen, S. A. (1999). Current theories of the causes of inflammatory bowel disease. Gastroenterology Clinics of North America, 28, 283–296.

    Article  CAS  PubMed  Google Scholar 

  • Pasikanti, K. K., Esuvaranathan, K., et al. (2010). Noninvasive urinary metabonomic diagnosis of human bladder cancer. Journal of Proteome Research, 9(6), 2988–2995.

    Article  CAS  PubMed  Google Scholar 

  • Pasikanti, K. K., Ho, P. C., et al. (2008). Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. Journal of Chromatography B, 871(2), 202–211.

    Article  CAS  Google Scholar 

  • Peakman, T. C., & Elliott, P. (2008). The UK Biobank sample handling and storage validation studies. International Journal of Epidemiology, 37(suppl 1), i2–i6.

    Article  PubMed  Google Scholar 

  • Rahman, Q., & Schmeisser, G. (1990). Characterization of the speed of convergence of the trapezoidal rule. Numerische Mathematik, 57(1), 123–138.

    Article  Google Scholar 

  • Sattlecker, M., Bessant, C., et al. (2010). Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics. Analyst, 135(5), 895–901.

    Article  CAS  PubMed  Google Scholar 

  • Schoepfer, A. M., Dehlavi, M.-A., et al. (2013). Diagnostic delay in Crohn’s disease is associated with a complicated disease course and increased operation rate. American Journal of Gastroenterology, 108(11), 1744–1753.

    Article  PubMed  Google Scholar 

  • Seidman, E., & Deslandres, C. (1997). Pitfalls in the diagnosis and management of pediatric IBD. Lancaster: Kluwer Academic Publishing.

    Google Scholar 

  • Stange, E. F., Travis, S. P. L., et al. (2008). European evidence-based consensus on the diagnosis and management of ulcerative colitis: Definitions and diagnosis. Journal of Crohn’s and Colitis, 2(1), 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Tomasi, G., van den Berg, F., et al. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18(5), 231–241.

    Article  CAS  Google Scholar 

  • van den Berg, R., Hoefsloot, H., et al. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7(1), 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vella, M., Masood, M. R., et al. (2007). Surgery for ulcerative colitis. The Surgeon, 5(5), 355–362.

    Google Scholar 

  • von Stein, P., Kouznetsov, N., et al. (2007). P032 multi-gene approach to discriminate for ulcerative colitis, Crohn’s disease and irritable bowel syndrome. Journal of Crohn’s and Colitis Supplements, 1(1), 12.

    Article  Google Scholar 

  • von Stein, P., Lofberg, R., et al. (2008). Multigene analysis can discriminate between ulcerative colitis, Crohn’s disease, and irritable bowel syndrome. Gastroenterology, 134(7), 1869–1881.

    Article  Google Scholar 

  • Walton, C., Fowler, D. P., et al. (2013). Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflammatory Bowel Diseases, 19(10), 2069–2078.

    Article  PubMed  Google Scholar 

  • Westerhuis, J., Hoefsloot, H., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81–89.

    Article  CAS  Google Scholar 

  • Wiklund, S., Johansson, E., et al. (2007). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.

    Article  PubMed  Google Scholar 

  • Wold, S., Esbensen, K., et al. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  CAS  Google Scholar 

  • Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561–577.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Wellcome Trust for funding the work (Project 080238/Z/06/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Cauchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauchi, M., Fowler, D.P., Walton, C. et al. Application of gas chromatography mass spectrometry (GC–MS) in conjunction with multivariate classification for the diagnosis of gastrointestinal diseases. Metabolomics 10, 1113–1120 (2014). https://doi.org/10.1007/s11306-014-0650-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0650-1

Keywords

Navigation