Skip to main content

Advertisement

Log in

Role of the tumor suppressor IQGAP2 in metabolic homeostasis: possible link between diabetes and cancer

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Deficiency of IQGAP2, a scaffolding protein expressed primarily in liver leads to rearrangements of hepatic protein compartmentalization and altered regulation of enzyme functions predisposing development of hepatocellular carcinoma and diabetes. Employing a systems approach with proteomics, metabolomics and fluxes characterizations, we examined the effects of IQGAP2 deficient proteomic changes on cellular metabolism and the overall metabolic phenotype. Iqgap2 /mice demonstrated metabolic inflexibility, fasting hyperglycemia and obesity. Such phenotypic characteristics were associated with aberrant hepatic regulations of glycolysis/gluconeogenesis, glycogenolysis, lipid homeostasis and futile cycling corroborated with corresponding proteomic changes in cytosolic and mitochondrial compartments. IQGAP2 deficiency also led to truncated TCA-cycle, increased anaplerosis, increased supply of acetyl-CoA for de novo lipogenesis, and increased mitochondrial methyl-donor metabolism necessary for nucleotides synthesis. Our results suggest that changes in metabolic networks in IQGAP2 deficiency create a hepatic environment of a ‘pre-diabetic’ phenotype and a predisposition to non-alcoholic fatty liver disease which has been linked to the development of hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An, S., et al. (2010). Microtubule-assisted mechanism for functional metabolic macromolecular complex formation. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 12872–12876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atcheson, E., et al. (2011). IQ-motif selectivity in human IQGAP2 and IQGAP3: Binding of calmodulin and myosin essential light chain. Bioscience Reports, 31, 371–379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barron, J. T., Gu, L., & Parrillo, J. E. (1998). Malate–aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle. Journal of Molecular and Cellular Cardiology, 30(8), 1571–1579.

    Article  CAS  PubMed  Google Scholar 

  • Barry, R. M., & Gitai, Z. (2011). Self-assembling enzymes and the origins of the cytoskeleton. Current Opinion in Microbiology, 14(6), 704–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindea, G., et al. (2009). ClueGO: A cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt, D. T., & Grosse, R. (2007). Get to grips: Steering local actin dynamics with IQGAPs. EMBO Reports, 8(11), 1019–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bratanova-Tochkova, T. K., et al. (2002). Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes, 51(Suppl 1), S83–S90.

    Article  CAS  PubMed  Google Scholar 

  • Briggs, M. W., & Sacks, D. B. (2003). IQGAP proteins are integral components of cytoskeletal regulation. EMBO Reports, 4(6), 571–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill, S., et al. (1996). The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Molecular and Cellular Biology, 16(9), 4869–4878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunengraber, D. Z., et al. (2003). Influence of diet on the modeling of adipose tissue triglycerides during growth. The American Journal of Physiology-Endocrinology and Metabolism, 285(4), E917–E925.

    Article  CAS  PubMed  Google Scholar 

  • Burkart, A., et al. (2011). Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response. Journal of Biological Chemistry, 286(6), 4081–4089.

    Article  CAS  PubMed  Google Scholar 

  • Chiariello, C. S., et al. (2012). Ablation of Iqgap2 protects from diet-induced hepatic steatosis due to impaired fatty acid uptake. Regulatory Peptides, 173(1–3), 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Dansen, T. B., & Wirtz, K. W. (2001). The peroxisome in oxidative stress. IUBMB Life, 51(4), 223–230.

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis, R. J., et al. (2008). The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7(1), 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, R. E., et al. (2007). Regulation of lipolysis in adipocytes. Annual Review of Nutrition, 27, 79–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endemann, G., et al. (1982). Lipogenesis from ketone bodies in the isolated perfused rat liver. Evidence for the cytosolic activation of acetoacetate. Journal of Biological Chemistry, 257(7), 3434–3440.

    CAS  PubMed  Google Scholar 

  • Erickson, J. W., Cerione, R. A., & Hart, M. J. (1997). Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. Journal of Biological Chemistry, 272(39), 24443–24447.

    Article  CAS  PubMed  Google Scholar 

  • Fair, A. M., & Montgomery, K. (2009). Energy balance, physical activity, and cancer risk. Methods in Molecular Biology, 472, 57–88.

    Article  PubMed  Google Scholar 

  • Galgani, J. E., Moro, C., & Ravussin, E. (2008). Metabolic flexibility and insulin resistance. The American Journal of Physiology-Endocrinology and Metabolism, 295(5), E1009–E1017.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz, C., et al. (2013). Mitochondrial dysfunction in nonalcoholic fatty liver disease and insulin resistance: Cause or consequence? Free Radical Research, 47, 854–868.

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal, A. K., et al. (2005). Rapid measurement of plasma acylcarnitines by liquid chromatography–tandem mass spectrometry without derivatization. Clinica Chimica Acta; International Journal of Clinical Chemistry, 358(1–2), 104–112.

    Article  CAS  PubMed  Google Scholar 

  • Gilibili, R. R., et al. (2011). Development and validation of a highly sensitive LC–MS/MS method for simultaneous quantitation of acetyl-CoA and malonyl-CoA in animal tissues. Biomedical Chromatography, 25(12), 1352–1359.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, R. P., & Brunengraber, H. (1980). Contributions of cytosolic and mitochondrial acetyl-CoA syntheses to the activation of lipogenic acetate in rat liver. Advances in Experimental Medicine and Biology, 132, 413–418.

    CAS  PubMed  Google Scholar 

  • Gong, B., Chen, Q., & Almasan, A. (1998). Ionizing radiation stimulates mitochondrial gene expression and activity. Radiation Research, 150(5), 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, N. M., et al. (2010). Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nature Biotechnology, 28(1), 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, J., et al. (2006). Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells. Circulation Research, 99(9), 924–932.

    Article  CAS  PubMed  Google Scholar 

  • Higashi, K., et al. (2011). Adipokine ganglioside GM2 activator protein stimulates insulin secretion. FEBS Letters, 585(16), 2587–2591.

    Article  CAS  PubMed  Google Scholar 

  • Hinke, S. A., et al. (2012). Anchored phosphatases modulate glucose homeostasis. EMBO Journal, 31(20), 3991–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingerson-Mahar, M., et al. (2010). The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nature Cell Biology, 12(8), 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, M., et al. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336(6084), 1040–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, A., et al. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical Chemistry, 74(20), 5383–5392.

    Article  CAS  PubMed  Google Scholar 

  • Kind, T., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81(24), 10038–10048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda, S., et al. (1996). Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. Journal of Biological Chemistry, 271(38), 23363–23367.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. N., Bergner, E. A., & Guo, Z. K. (1992). Mass isotopomer pattern and precursor-product relationship. Biological Mass Spectrometry, 21(2), 114–122.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. N., Sorou, S., & Bergner, E. A. (1991). Glucose isotope, carbon recycling, and gluconeogenesis using [U-13C] glucose and mass isotopomer analysis. Biochemical Medicine and Metabolic Biology, 45(3), 298–309.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. N., et al. (1994). In vivo measurement of fatty acids and cholesterol synthesis using D2O and mass isotopomer analysis. American Journal of Physiology, 266(5 Pt 1), E699–E708.

    CAS  PubMed  Google Scholar 

  • Lee, Y. Y., et al. (2011). Subcellular tissue proteomics of hepatocellular carcinoma for molecular signature discovery. Journal of Proteome Research, 10(11), 5070–5083.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. M., et al. (2002). Effects of hydrogen peroxide on mitochondrial gene expression of intestinal epithelial cells. World Journal of Gastroenterology, 8(6), 1117–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd, M. D., et al. (2008). α-Methylacyl-CoA racemase—an ‘obscure’ metabolic enzyme takes centre stage. FEBS Journal, 275(6), 1089–1102.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, M. D., et al. (2013). α-Methylacyl-CoA racemase (AMACR): Metabolic enzyme, drug metabolizer and cancer marker P504S. Progress in Lipid Research, 52(2), 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Logue, J. S., et al. (2011). Anchored protein kinase A recruitment of active Rac GTPase. Journal of Biological Chemistry, 286(25), 22113–22121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, M., & Shyy, J. Y.-J. (2006). Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation. American Journal of Physiology-Cell Physiology, 290(6), C1477–C1486.

    Article  CAS  PubMed  Google Scholar 

  • Ma, D., et al. (2012). Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells. Pancreas, 41(3), 397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurek, S., et al. (2002). Pyruvate kinase type M2: A crossroad in the tumor metabolome. British Journal of Nutrition, 87(Suppl 1), S23–S29.

    Article  CAS  PubMed  Google Scholar 

  • McCallum, S. J., Erickson, J. W., & Cerione, R. A. (1998). Characterization of the association of the actin-binding protein, IQGAP, and activated Cdc42 with Golgi membranes. Journal of Biological Chemistry, 273(35), 22537–22544.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, H., et al. (1998). Structure, function and physiological role of glycine N-methyltransferase. The International Journal of Biochemistry and Cell Biology, 30(1), 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Owen, O. E., Kalhan, S. C., & Hanson, R. W. (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. Journal of Biological Chemistry, 277(34), 30409–30412.

    Article  CAS  PubMed  Google Scholar 

  • Park, C. Y., et al. (2008). Rapid and accurate peptide identification from tandem mass spectra. Journal of Proteome Research, 7(7), 3022–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathmanathan, S., et al. (2011). The interaction of IQGAPs with calmodulin-like proteins. Biochemical Society Transactions, 39(2), 694–699.

    Article  CAS  PubMed  Google Scholar 

  • Pilkis, S. J., & Granner, D. K. (1992). Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annual Review of Physiology, 54, 885–909.

    Article  CAS  PubMed  Google Scholar 

  • Pisani, P. (2008). Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Archives of Physiology and Biochemistry, 114(1), 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Reaven, G. M., Hollenbeck, C. B., & Chen, Y. D. (1989). Relationship between glucose tolerance, insulin secretion, and insulin action in non-obese individuals with varying degrees of glucose tolerance. Diabetologia, 32(1), 52–55.

    Article  CAS  PubMed  Google Scholar 

  • Roesch, K., et al. (2004). The calcium-binding aspartate/glutamate carriers, citrin and aralar1, are new substrates for the DDP1/TIMM8a–TIMM13 complex. Human Molecular Genetics, 13(18), 2101–2111.

    Article  CAS  PubMed  Google Scholar 

  • Roessner, U., et al. (2000). Technical advance: Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal, 23(1), 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Sacks, D. B. (2006). The role of scaffold proteins in MEK/ERK signalling. Biochemical Society Transactions, 34(Pt 5), 833–836.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, V. A. (2012). Watch the GAP: Emerging roles for IQ motif-containing GTPase-activating proteins IQGAPs in hepatocellular carcinoma. International Journal of Hepatology, 2012, 958673.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, V. A., et al. (2003). IQGAP2 functions as a GTP-dependent effector protein in thrombin-induced platelet cytoskeletal reorganization. Blood, 101(8), 3021–3028.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, V. A., et al. (2008). Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. Molecular and Cellular Biology, 28(5), 1489–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, J. D., & Newton, A. C. (2012). Shedding light on local kinase activation. BMC Biology, 10, 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon, K. B. (2012). IQGAP family members in yeast, dictyostelium, and mammalian cells. Internation Journal of Cell Biology, 2012, 894817.

    Google Scholar 

  • Sipe, J. C., et al. (2010). Biomarkers of endocannabinoid system activation in severe obesity. PLoS ONE, 5(1), e8792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tailleux, A., et al. (2002). Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis, 164(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, S., Walker, S. W., & Brown, B. L. (1982). Calmodulin and insulin secretion. Diabetologia, 22(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Vaitheesvaran, B., Leroith, D., & Kurland, I. J. (2010a). MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity. Diabetologia, 53, 2224–2232.

    Article  CAS  PubMed  Google Scholar 

  • Vaitheesvaran, B., et al. (2010b). Advantages of dynamic “closed loop” stable isotope flux phenotyping over static “open loop” clamps in detecting silent genetic and dietary phenotypes. Metabolomics, 6(2), 180–190.

    Article  CAS  PubMed  Google Scholar 

  • Vaitheesvaran, B., et al. (2012). Peripheral effects of FAAH deficiency on fuel and energy homeostasis: Role of dysregulated lysine acetylation. PLoS ONE, 7(3), e33717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde, I., et al. (1979). Calmodulin activation of adenylate cyclase in pancreatic islets. Science, 206(4415), 225–227.

    Article  CAS  PubMed  Google Scholar 

  • van de Weijer, T., et al. (2013). Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PLoS ONE, 8(2), e51648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.

    Article  Google Scholar 

  • Vranic, M. (1992). Banting lecture: Glucose turnover. A key to understanding the pathogenesis of diabetes (indirect effects of insulin). Diabetes, 41(9), 1188–1206.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Tolan, D. R., & Pagliaro, L. (1997). Metabolic compartmentation in living cells: structural association of aldolase. Experimental Cell Research, 237(2), 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., et al. (1996). The molecular nature of the F-actin binding activity of aldolase revealed with site-directed mutants. Journal of Biological Chemistry, 271(12), 6861–6865.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., et al. (2007). IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. Journal of Cell Science, 120(Pt 4), 567–577.

    Article  CAS  PubMed  Google Scholar 

  • Weisbrod, C. R., et al. (2013). Performance evaluation of a dual linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer for proteomics research. Journal of Proteomics, 88, 109–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, C. D., Brown, M. D., & Sacks, D. B. (2009). IQGAPs in cancer: A family of scaffold proteins underlying tumorigenesis. FEBS Letters, 583(12), 1817–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, C., et al. (2009). BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources. Genome Biology, 10(11), R130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, Y., et al. (2012). IQGAP2, a candidate tumour suppressor of prostate tumorigenesis. Biochimica et Biophysica Acta, 1822(6), 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., et al. (2002). Peroxisome proliferator-activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production. Journal of Biological Chemistry, 277(52), 50237–50244.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., et al. (2003). Determination of a glucose-dependent futile recycling rate constant from an intraperitoneal glucose tolerance test. Analytical Biochemistry, 315(2), 238–246.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, S., et al. (1994). Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice. The Journal of Clinical Investigation, 94(6), 2457–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would sincerely like to thank Dr. Schmidt VA (SUNY, Stony Brook) for the kind gift of Iqgap2 −/− mice for the study. Proteome research efforts (J.E.B, A.N, C.Z) were supported by grants 5R01GM086688, 1U19AI10777, 5R01AI101307, and 5R01HL110879. I.J.K., was supported by DK58132-01A2 and Diabetes Research and Training Center (DRTC), NIH grant P60DK020541, I.J.K and C.G were supported by NIAID grant U19AI091175-01. L.W.N.P was supported by the biomedical mass spectrometry laboratory at Harbor-UCLA, partly supported by the Clinical and Translational Science Institute at UCLA (UL1 TR000124) and the Center of Excellence for Pancreatic Diseases (PO1 AT00396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Bruce.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

Indirect Calorimetry: Oxygen Consumption (VO2) and activity for Iqgap2 -/- and control were determined during the diurnal cycle and fasted to fed transitions. Day (light cycle) and night (dark cycle) 12 hours, (over)night fast – 15hrs, day re-fed - 5hrs in duration. n=8, (a) represents VO2 calculated normalizing measurements to total body mass, (b) represents VO2 calculated using lean body mass. (c) represents ambulatory activity determined simultaneously using an Opto-Varimetrix-3 sensor system. Consecutive adjacent infrared beam breaks in either the x- or y-axes were scored as an activity (total z counts). Activity was graphed by normalizing measurements to total body mass. Data are mean ±SEM. Error bars are represented only in one direction for clarity. Supplementary material 1 (JPEG 765 kb)

Supplemental Figure S2

Bar graphs illustrating 18hr Fast and refed plasma levels of important amino acids for Iqgap2 -/- and control mice. Data are mean ± SEM. * represents p<0.05 using Students T test comparisons for 18hr fast Iqgap2 -/- and control mice. The refed aminoacid levels were comparable between the groups. F-phenylalanine, S – serine, I- Isoleucine, L- leucine, T- threonine, V-valine, M-methionine, E-glutamic acid, A-alanine, G-glycine. Supplementary material 2 (JPEG 128 kb)

Supplemental Figure S3

Bar graphs illustrating stable isotope [U-13C6]-glucose (M+6) infusion studies a) represents hepatic glucose production calculated using isotope infusion rate and final M+6 glucose enrichments and is expressed as mg/kg/min. b) represents ‘F’ - sum of fraction mass isotopomers (M1/∑m+M2/∑m+M3/∑m) that recycled from the infused isotope [U-13C6]-glucose and contributed to Cori cycling. Data are mean ± SEM. ** represents p<0.001 using Students T test comparisons for 18hr fast Iqgap2 -/- and control mice. Supplementary material 3 (JPEG 478 kb)

Supplemental Figure S4a

Immunoblot analysis illustrating 18hr Fast and refed expressions of key metabolic proteins involved in hepatic anaplerotic (PC) and cataplerotic reactions (PEPCK, M2-PK is a unique isoform of pyruvate kinase expressed during hepatocarcinogenesis) for Iqgap2 -/- and control mice. PC-pyruvate carboxylase, PEPCK-phosphoenol pyruvatec carboxy kinase, M2-PK- M2 isoform of pyruvate kinase.Supplementary material 4 (JPEG 199 kb)

Supplemental Figure S4b

Critical proteins ( PC, PK and PEPCK) and loading control PCNA were quantifed using ImageJ software and are shown as bar graphs. Values were normalized to Control and are data±SEM . * represents p<0.05 for Iqgap2 -/-against Control mice using Students’s Ttest. Supplementary material 5 (JPEG 305 kb)

Supplemental Figure S5

Immunoblot analysis illustrating 18hr Fast and refed expressions of key metabolic proteins involved in lipid synthesis for Iqgap2 -/- and control. FAS-fatty acid synthase, ACL- ATP citrate lyase, ACC – acetyl coA carboxylase, DGAT1 – diacylglycaerol acyl transferase 1, RAPTOR- regulatory-associated protein of mTOR.Supplementary material 6 (JPEG 239 kb)

Supplemental Figure S6

Thin layer chromatography (TLC) analysis for lipids illustrating 18hr Fast and refed triglycerides levels in Iqgap2 -/- and control mice. Supplementary material 7 (JPEG 163 kb)

Supplemental Figure S7

Bar graphs illustrating 18hr Fast and refed hepatic levels for important antioxidant metabolites for Iqgap2 -/- and control mice. Data are mean ± SEM. ** represents p<0.01 using Students T test. Supplementary material 8 (JPEG 337 kb)

Supplemental Figure S8

Peptide-level MS1 integrated area calculation was performed on at least 5 peptides specific to pyruvate kinase R/L isoform. The stacked chromatograms of biological replicates of Fast Iqgap2 -/- and control are shown with a chromatographic peak eluting around 61-63 minute, corresponding to peptide GSQVLVTVDPK. Integrated area under individual peak is highlighted. The inset mass spectrum corresponding to the chromatographic peak shows isotopic distribution of the singly charged protonated precursor ion of GSQVLVTVDPK at m/z 1142.64. The ratio of average peak area of fast Iqgap2 -/- to the average peak area of fast control showed 2.6-fold increase for the peptide. Supplementary material 9 (JPEG 228 kb)

Supplementary material 10 (DOCX 24 kb)

Supplementary material 11 (DOCX 12 kb)

Supplementary material 12 (DOCX 17 kb)

Supplementary material 13 (XLSX 26 kb)

Supplementary material 14 (XLSX 11 kb)

Supplementary material 15 (XLSX 14 kb)

Supplementary material 16 (DOCX 13 kb)

Supplementary material 17 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaitheesvaran, B., Hartil, K., Navare, A. et al. Role of the tumor suppressor IQGAP2 in metabolic homeostasis: possible link between diabetes and cancer. Metabolomics 10, 920–937 (2014). https://doi.org/10.1007/s11306-014-0639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0639-9

Keywords

Navigation