Skip to main content
Log in

UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bell, D. S., & Jones, A. D. (2005). Solute attributes and molecular interactions contributing to “U-shape” retention on a fluorinated high-performance liquid chromatography stationary phase. Journal of Chromatography A, 1073, 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Blahová, E., Jandera, P., Cacciola, F., & Mondello, L. (2006). Two-dimensional and serial column reversed-phase separation of phenolic antioxidants on octadecyl-, polyethyleneglycol-, and pentafluorophenylpropyl-silica columns. Journal of Separation Science, 29, 555–566.

    Article  PubMed  Google Scholar 

  • Boettcher, A. A., & Targett, N. M. (1993). Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology, 74, 891–903.

    Article  CAS  Google Scholar 

  • Colliec, S., Boisson-vidal, C., & Jozefonvicz, J. (1994). A low molecular weight fucoidan fraction from the brown seaweed Pelvetia canaliculata. Phytochemistry (Elsevier), 35, 697–700.

    Article  CAS  Google Scholar 

  • Eom, S.-H., Lee, S.-H., Yoon, N.-Y., et al. (2012). α-Glucosidase- and α-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. Journal of the Science of Food and Agriculture, 92, 2084–2090.

    Article  CAS  PubMed  Google Scholar 

  • Ferreres, F., Lopes, G., Gil-Izquierdo, A., et al. (2012). Phlorotannin extracts from Fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine Drugs, 10, 2766–2781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glombitza, K. W., & Klapperich, K. (1985). Antibiotics from algae. XXXIV. Cleavage of the high-molecular-weight methylated phlorotannin fraction from the brown alga Pelvetia canaliculata. Botanica Marina, XXVIII, 139–144.

    Google Scholar 

  • Grebenstein, N., & Frank, J. (2012). Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. Journal of Chromatography A, 1243, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.-M., Heo, S.-J., Kim, K.-N., Lee, S.-H., & Jeon, Y.-J. (2012). Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect. Journal of Functional Foods, 4, 158–166.

    Article  CAS  Google Scholar 

  • Koivikko, R., Loponen, J., Pihlaja, K., & Jormalainen, V. (2007). High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus Vesiculosus. Phytochemical Analysis, 18, 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Qian, Z.-J., Kim, M.-M., & Kim, S.-K. (2011). Cytotoxic activities of phlorethol and fucophlorethol derivatives isolated from Laminariaceae Ecklonia cava. Journal of Food Biochemistry, 35, 357–369.

    Article  CAS  Google Scholar 

  • Marais, M.-F., & Joseleau, J.-P. (2001). A fucoidan fraction from Ascophyllum nodosum. Carbohydrate Research, 336, 155–159.

    Article  CAS  PubMed  Google Scholar 

  • Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., & Nakamura, T. (2002). Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobial Chemotherapy, 50, 889–890.

    Article  CAS  PubMed  Google Scholar 

  • Novakova, L., Matysova, L., & Solich, P. (2006). Advantages of application of UPLC in pharmaceutical analysis. Talanta, 68, 908–918.

    Article  CAS  PubMed  Google Scholar 

  • Núñeza, O., Gallart-Ayalaa, H., Martinsb, C. P. B., & Luccic, P. (2012). New trends in fast liquid chromatography for food and environmental analysis. Journal of Chromatography A, 1228, 298–323.

    Article  Google Scholar 

  • Nwosu, F., Morris, J., Lund, V. A., Stewart, D., Ross, H. A., & McDougall, G. J. (2010). Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chemistry, 126, 1006–1012.

    Article  Google Scholar 

  • Pavia, H., Cervin, G., Lindgren, A., & Aberg, P. (1997). Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Marine Ecology Progress Series, 157, 139–146.

    Article  CAS  Google Scholar 

  • Ragan, M. A., & Glombitza, K. W. (1986). Phlorotannins, brown algal polyphenols. Progress in Phycological Research, 4, 129–241.

    CAS  Google Scholar 

  • Shibata, T., Ishimaru, K., Kawaguchi, S., Yoshikawa, H., & Hama, Y. (2008). Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology, 20, 705–711.

    Article  CAS  Google Scholar 

  • Steevensz, A. J., MacKinnon, S. L., Hankinson, R., et al. (2012). Profiling phlorotannins in brown macroalgae by liquid chromatography–high resolution mass spectrometry. Phytochemical Analysis, 3, 547–553.

    Article  Google Scholar 

  • Stern, J. L., Hagerman, A. E., Steinberg, P. D., & Mason, P. K. (1996). Phlorotannin-protein interactions. Journal of Chemical Ecology, 22, 1877–1899.

    Article  CAS  PubMed  Google Scholar 

  • Targett, N. M., Boettcher, A. A., Targett, T. E., & Vrolijk, N. H. (1995). Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia, 103, 170–179.

    Article  Google Scholar 

  • Tierney, M. S., Croft, A. K., & Hayes, M. (2010). A review of antihypertensive and antioxidant activities in macroalgae. Botanica Marina, 53, 387–408.

    Article  CAS  Google Scholar 

  • Tierney, M. S., Smyth, T. J., Hayes, M., Soler-Vila, A., Croft, A. K., & Brunton, N. (2013a). Influence of pressurised liquid extraction and solid-liquid extraction on the phenolic content and antioxidant activities of Irish macroalgae. International Journal of Food Science and Technology, 48, 860–869.

    Article  CAS  Google Scholar 

  • Tierney, M. S., Smyth, T. J., Rai, D. K., Soler-Vila, A., Croft, A. K., & Brunton, N. (2013b). Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size. Food Chemistry, 139, 753–761.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Jónsdóttir, R., Liu, H., et al. (2012). Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 60, 5874–5883.

    Article  CAS  PubMed  Google Scholar 

  • Wijesinghe, W. A. J. P., Ko, S.-C., & Jeon, Y.-J. (2011). Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutrition Research and Practice, 5, 93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Michelle Tierney was in receipt of Walsh Fellowship funding from Teagasc the Irish Agriculture and Food Development Authority for the duration of this work and this funding is gratefully acknowledged. This work has also been supported by the Marine Functional Foods Research Initiative (NutraMara project) which is a programme for marine based functional food development. This project (Grant-Aid Agreement No. MFFRI/07/01) is carried out under the Sea Change Strategy with the support of the Marine Institute and the Department of Agriculture, Food and the Marine, funded under the National Development Plan 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Brunton.

Additional information

Research carried out as part of the Marine Functional Foods Research Initiative, Nutramara.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tierney, M.S., Soler-Vila, A., Rai, D.K. et al. UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis . Metabolomics 10, 524–535 (2014). https://doi.org/10.1007/s11306-013-0584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0584-z

Keywords

Navigation