Skip to main content

Advertisement

Log in

Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography–ion mobility–mass spectrometry

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

ABSTRACT

A method has been developed for metabolite profiling of the salivary metabolome based on protein precipitation and ultra-high performance liquid chromatography coupled with ion mobility-mass spectrometry (UHPLC–IM–MS). The developed method requires 0.5 mL of human saliva, which is easily obtainable by passive drool. Standard protocols have been established for the collection, storage and pre-treatment of saliva. The use of UHPLC allows rapid global metabolic profiling for biomarker discovery with a cycle time of 15 min. Mass spectrometry imparts the ability to analyse a diverse number of species reproducibly over a wide dynamic range, which is essential for profiling of biofluids. The combination of UHPLC with IM–MS provides an added dimension enabling complex metabolic samples to be separated on the basis of retention time, ion mobility and mass-to-charge ratio in a single chromatographic run. The developed method has been applied to targeted metabolite identification and untargeted metabolite profiling of saliva samples collected before and after exercise-induced physiological stress. δ-Valerolactam has been identified as a potential biomarker on the basis of retention time, MS/MS spectrum and ion mobility drift time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aimetti, M., Cacciatore, S., Graziano, A., & Tenori, L. (2011). Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics, 8, 465–474.

    Article  Google Scholar 

  • Álvarez-Sánchez, B., Priego-Capote, F., & Luque de Castro, M. D. (2012). Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. Journal of Chromatography A, 1248, 178–181.

    Article  PubMed  Google Scholar 

  • Callery, P. S., & Geelhaar, L. A. (1984). Biosynthesis of 5-aminopentanoic acid and 2-piperidone from cadaverine and 1-piperideine in mouse. Journal of Neurochemistry, 43, 1631–1634.

    Article  CAS  PubMed  Google Scholar 

  • Chiappin, S., Antonelli, G., Gatti, R., & De Palo, E. F. (2007). Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clinica Chimica Acta, 383, 30–40.

    Article  CAS  Google Scholar 

  • Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48, 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Creaser, C. S., Griffiths, J. R., Bramwell, C. J., Noreen, S., Hill, C., et al. (2004). Ion mobility spectrometry: A review. Part 1. Structural analysis by mobility measurement. The Analyst, 129, 984.

    Article  CAS  Google Scholar 

  • De Almeida, P. V., Gregio, A. M. T., Machado, M. A. N., De Lima, A. A. S., & Azevedo, L. R. (2008). Saliva composition and functions: a comprehensive review. Journal of Contemporary Dental Practice, 9, 72–80.

    Google Scholar 

  • Dwivedi, P., Wu, P., Klopsch, S. J., Puzon, G. J., Xun, L., & Hill, H. H. (2007). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics, 4, 63–80.

    Article  Google Scholar 

  • Fonville, J. M., Richards, S. E., Barton, R. H., Boulange, C. L., Ebbels, T. M. D., Nicholson, J. K., et al. (2010). The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. Journal of Chemometrics, 24, 636–649.

    Article  CAS  Google Scholar 

  • Harry, E. L., Weston, D. J., Bristow, A. W. T., Wilson, I. D., & Creaser, C. S. (2008). An approach to enhancing coverage of the urinary metabonome using liquid chromatography-ion mobility-mass spectrometry. Journal of chromatography B, 871, 357–361.

    Article  CAS  Google Scholar 

  • Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: normal composition, flow, and function. The Journal of prosthetic dentistry, 85, 162–169.

    Article  CAS  PubMed  Google Scholar 

  • Issaq, H. J., Abbott, E., & Veenstra, T. D. (2008). Utility of separation science in metabolomic studies. Journal of Separation Science, 31, 1936–1947.

    Article  CAS  PubMed  Google Scholar 

  • Kanu, A. B., Dwivedi, P., Tam, M., Matz, L., & Herbert, H. H, Jr. (2008). Special feature: ion mobility–mass spectrometry. Journal of Mass Spectrometry, 43, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Lindon, J. C., & Nicholson, J. K. (2008). Systems biology metabonomics. Nature, 455, 1054–1056.

    Article  PubMed  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Pink, R., Simek, J., Vondrakova, J., Faber, E., Michl, P., Pazdera, J., et al. (2009). Saliva as a diagnostic medium. Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 153, 103–110.

    Article  CAS  PubMed  Google Scholar 

  • Polson, C., Sarkar, P., Incledon, B., Raguvaran, V., & Grant, R. (2003). Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 785, 263–275.

    Article  CAS  Google Scholar 

  • Shvartsburg, A. A., & Smith, R. D. (2008). Fundamentals of traveling wave ion mobility spectrometry. Analytical Chemistry, 80, 9689–9699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swartz, M. E. (2005). UPLC™ : An Introduction and Review. Journal of Liquid Chromatography & Related Technologies, 28, 1253–1263.

    Article  CAS  Google Scholar 

  • Takeda, I., Stretch, C., Barnaby, P., Bhatnager, K., Rankin, K., Fu, H., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22, 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & Van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC genomics, 7, 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh, L. J. (2007). Clinical aspects of salivary biology for the dental clinician. International Dentistry South Africa (Australasian Edition), 2, 16–30.

    Google Scholar 

  • Want, E. J., Wilson, I. D., Gik, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC–MS. Nature Protocols, 5, 1005–1018.

    Article  CAS  PubMed  Google Scholar 

  • Wei, J., Xie, G., Zhou, Z., Shi, P., Qiu, Y., Zheng, X., et al. (2010). Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer, 129, 2207–2217.

    Article  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807.

    Article  CAS  PubMed  Google Scholar 

  • Xiayan, L., & Legido-Quigley, C. (2008). Advances in separation science applied to metabonomics. Electrophoresis, 29, 3724–3736.

    Article  PubMed  Google Scholar 

  • Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Recent and potential developments of biofluid analyses in metabolomics. Journal of Proteomics, 75, 1079–1088.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jayne Kirk and Waters Corporation for the help with the software. Authors would like to thank Robert Smith for his input to identification of metabolite and Daniel Weston at AstraZeneca for providing accurate mass data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin S. Creaser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkar, A., Devenport, N.A., Martin, H.J. et al. Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography–ion mobility–mass spectrometry. Metabolomics 9, 1192–1201 (2013). https://doi.org/10.1007/s11306-013-0541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0541-x

Keywords

Navigation