Skip to main content
Log in

A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography–mass spectrometry (GC–MS) analysis. A one-step derivatization using 100 μL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations of all targeted compounds showed good intra- and inter-day (within 7 days) precision (<10 %), and good stability (<20 %) within 4 days at room temperature (23–25 °C), or 7 days when stored at −20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistical analysis of the concentrations of these targeted metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SCFAs:

Short-chain fatty acids

BCAAs:

Branched-chain amino acids

PCF:

Propyl chloroformate

GC–MS:

Gas chromatography–mass spectrometry

RSDs:

Relative standard deviations

CE:

Capillary electrophoresis

HPLC:

High performance liquid chromatography

GC:

Gas chromatography

HS-SPME:

Headspace solid-phase microextraction

PrOH:

Propanol

Py:

Pyridine

IS:

Internal standard

RT:

Retention time

PLS:

Partial least squares regression

LOD:

Limit of detection

MCFAs:

Medium chain fatty acids

References

  • Agrafiotou, P., Sotiropoulos, S., & Pappa-Louisi, A. (2009). Direct RP-HPLC determination of underivatized amino acids with online dual UV absorbance, fluorescence, and multiple electrochemical detection. Journal of Separation Science, 32, 949–954.

    Article  PubMed  CAS  Google Scholar 

  • Albert, D. B., & Martens, C. S. (1997). Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Marine Chemistry, 56, 27–37.

    Article  CAS  Google Scholar 

  • Andoh, A., Tsujikawa, T., & Fujiyama, Y. (2003). Role of dietary fiber and short-chain fatty acids in the colon. Current Pharmaceutical Design, 9, 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Arellano, M., Jomard, P., El Kaddouri, S., Roques, C., Nepveu, F., & Couderc, F. (2000). Routine analysis of short-chain fatty acids for anaerobic bacteria identification using capillary electrophoresis and indirect ultraviolet detection. Journal of Chromatography B, 741, 89–100.

    Article  CAS  Google Scholar 

  • Augenlicht, L. H., Mariadason, J. M., Wilson, A., Arango, D., Yang, W. C., Heerdt, B. G., et al. (2002). Short chain fatty acids and colon cancer. Journal of Nutrition, 132, 3804S–3808S.

    PubMed  Google Scholar 

  • Bachmann, C., Colombo, J. P., & Beruter, J. (1979). Short chian fatty-acids in plasma and brain: Quantitative determination by gas-chromatography. Clinica Chimica Acta, 92, 153–159.

    Article  CAS  Google Scholar 

  • Badawy, A. A. B., Morgan, C. J., & Turner, J. A. (2008). Application of the Phenomenex EZ : Faast (TM) amino acid analysis kit for rapid gas-chromatographic determination of concentrations of plasma tryptophan and its brain uptake competitors. Amino Acids, 34, 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Barbas, C., Adeva, N., Aguilar, R., Rosillo, M., Rubio, T., & Castro, M. (1998). Quantitative determination of short-chain organic acids in urine by capillary electrophoresis. Clinical Chemistry, 44, 1340–1342.

    PubMed  CAS  Google Scholar 

  • Bianchi, F., Dall’Asta, M., Del Rio, D., Mangia, A., Musci, M., & Scazzina, F. (2011). Development of a headspace solid-phase microextraction gas chromatography–mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation. Food Chemistry, 129, 200–205.

    Article  CAS  Google Scholar 

  • Blottiere, H. M., Buecher, B., Galmiche, J. P., & Cherbut, C. (2003). Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proceedings of the Nutrition Society, 62, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut, 22, 763–779.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. Journal of Nutrition, 135, 1539S–1546S.

    PubMed  CAS  Google Scholar 

  • Heinrikson, R. L., & Meredith, S. C. (1984). Amino-acid-analysis by reverse-phase high-performance liquid-chromatography: Precolumn derivatization with phenylisothiocyanate. Analytical Biochemistry, 136, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Herman, M. A., She, P. X., Peroni, O. D., Lynch, C. J., & Kahn, B. B. (2010). Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. Journal of Biological Chemistry, 285, 11348–11356.

    Article  PubMed  CAS  Google Scholar 

  • Hijova, E., & Chmelarova, A. (2007). Short chain fatty acids and colonic health. Bratislava Medical Journal-Bratislavske Lekarske Listy, 108, 354–358.

    CAS  Google Scholar 

  • Holecek, M. (2010). Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition, 26, 482–490.

    Article  PubMed  CAS  Google Scholar 

  • Horspool, L. J. I., & McKellar, Q. A. (1991). Determination of short-chain fatty acids in equine cecal liquor by ion-exchange high-performance liquid-chromatography after solid-phase extraction. Biomedical Chromatography, 5, 202–206.

    Article  PubMed  CAS  Google Scholar 

  • Husek, P. (1995). Simultaneous profile analysis of plasma amino and organic-acids by capillary gas-chromatography. Journal of Chromatography B Biomedical Applications, 669, 352–357.

    Article  CAS  Google Scholar 

  • Husek, P. (1998). Chloroformates in gas chromatography as general purpose derivatizing agents. Journal of Chromatography B, 717, 57–91.

    Article  CAS  Google Scholar 

  • Israel, Y., Orrego, H., & Carmichael, F. J. (1994). Acetate-mediated effects of ethanol. Alcoholism Clinical and Experimental Research, 18, 144–148.

    Article  CAS  Google Scholar 

  • Jouvet, P., Rustin, P., Taylor, D. L., Pocock, J. M., Felderhoff-Mueser, U., Mazarakis, N. D., et al. (2000). Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: Implications for neurological impairment associated with maple syrup urine disease. Molecular Biology of the Cell, 11, 1919–1932.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, T., Izumi, N., Charlton, M. R., & Sata, M. (2011). Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology, 54, 1063–1070.

    Article  PubMed  CAS  Google Scholar 

  • Kles, K. A., & Chang, E. B. (2006). Short-chain fatty acids impact on intestinal adaptation inflammation, carcinoma, and failure. Gastroenterology, 130, S100–S105.

    Article  PubMed  CAS  Google Scholar 

  • Kotani, A., Miyaguchi, Y., Kohama, M., Ohtsuka, T., Shiratori, T., & Kusu, F. (2009). Determination of short-chain fatty acids in rat and human feces by high-performance liquid chromatography with electrochemical detection. Analytical Sciences, 25, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S. J. (2004). Cellular and physiological effects of short-chain fatty acids. Mini Reviews in Medicinal Chemistry, 4, 839–845.

    Article  PubMed  CAS  Google Scholar 

  • Mills, G. A., Walker, V., & Mughal, H. (1999). Headspace solid-phase microextraction with 1-pyrenyldiazomethane in-fibre derivatisation for analysis of faecal short-chain fatty acids. Journal of Chromatography B, 730, 113–122.

    Article  CAS  Google Scholar 

  • Miwa, H., Hiyama, C., & Yamamoto, M. (1985). High-performance liquid-chromatography of short-chain and long-chain fatty-acids as 2-nitrophenylhydrazides. Journal of Chromatography, 321, 165–174.

    Article  CAS  Google Scholar 

  • Miwa, H., & Yamamoto, M. (1987). High-performance liquid-chromatographic analysis of serum short-chain fatty-acids by direct derivatization. Journal of Chromatography Biomedical Applications, 421, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Muto, Y., Sato, S., Watanabe, A., Moriwaki, H., Suzuki, K., Kato, A., et al. (2006). Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatology Research, 35, 204–214.

    PubMed  CAS  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.

    Article  PubMed  CAS  Google Scholar 

  • Pan, L., Qiu, Y., Chen, T., Lin, J., Chi, Y., Su, M., et al. (2010). An optimized procedure for metabonomic analysis of rat liver tissue using gas chromatography/time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 52, 589–596.

    Article  PubMed  CAS  Google Scholar 

  • Perez Olivero, S. J., & Perez Trujillo, J. P. (2011). A new method for the determination of short-chain fatty acids from the aliphatic series in wines by headspace solid-phase microextraction-gas chromatography-ion trap mass spectrometry. Analytica Chimica Acta, 696, 59–66.

    Article  CAS  Google Scholar 

  • Poinsot, V., Carpene, M. A., Bouajila, J., Gavard, P., Feurer, B., & Couderc, F. (2012). Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis, 33, 14–35.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y., Su, M., Liu, Y., Chen, M., Gu, J., Zhang, J., et al. (2007). Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Analytica Chimica Acta, 583, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., et al. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105, 16767–16772.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, I. R. (2004). Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. Journal of Nutrition, 134, 2450S–2454S.

    PubMed  CAS  Google Scholar 

  • Schiffels, J., Baumann, M. E. M., & Selmer, T. (2011). Facile analysis of short-chain fatty acids as 4-nitrophenyl esters in complex anaerobic fermentation samples by high performance liquid chromatography. Journal of Chromatography A, 1218, 5848–5851.

    Article  PubMed  CAS  Google Scholar 

  • Soret, R., Chevalier, J., De Coppet, P., Poupeau, G., Derkinderen, P., Segain, J. P., et al. (2010). Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology, 138, 1772–1782.

    Article  PubMed  CAS  Google Scholar 

  • Stein, J., Kulemeier, J., Lembcke, B., & Caspary, W. F. (1992). Simple and rapid method for determination of short-chain fatty-acids in biological-material is by high-performance liquid-chromatography with ultraviolet detection. Journal of Chromatography Biomedical Applications, 576, 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Tao, X., Liu, Y., Wang, Y., Qiu, Y., Lin, J., Zhao, A., et al. (2008). GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia. Analytical and Bioanalytical Chemistry, 391, 2881–2889.

    Article  PubMed  CAS  Google Scholar 

  • Vonk, R. J., Priebe, M., Meijer, K., Venema, K., & Rnelofsen, H. (2011). The interaction of short-chain fatty acids (SCFA) with adipose tissue; relevance for systemic inflammation. Gastroenterology, 140, S860–S860.

    Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.

    Article  PubMed  Google Scholar 

  • Wang, L., Xu, R., Hu, B., Li, W., Sun, Y., Tu, Y., et al. (2010). Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chemistry, 123, 1259–1266.

    Article  CAS  Google Scholar 

  • Wong, J. M. W., de Souza, R., Kendall, C. W. C., Emam, A., & Jenkins, D. J. A. (2006). Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40, 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, G. H., Nyman, M., & Jonsson, J. A. (2006). Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomedical Chromatography, 20, 674–682.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X., Su, M., Qiu, Y., & Jia, W. (2012). Response to letter to the editor regarding “GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia”. Analytical and Bioannalytical Chemistry,. doi:10.1007/s00216-012-6047-y.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NIH Grants 1R01AA020212-01 and 3P30DK056350-10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihua Zhao or Wei Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 595 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Qiu, Y., Zhong, W. et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 9, 818–827 (2013). https://doi.org/10.1007/s11306-013-0500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0500-6

Keywords

Navigation