Skip to main content

Advertisement

Log in

Metabolome analysis during the morphological transition of Candida albicans

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Candida albicans is an opportunistic pathogen of humans with significant mortality in severely immunocompromised patients. The ability to switch from yeast to hyphal morphology and vice versa, in response to various environmental cues, is believed to be a critical virulence factor of this fungus. However, the mechanisms that recognize such environmental signals and trigger the morphological change at a system level are still not clearly understood. Therefore, we have compared the metabolite profiles of C. albicans cells growing under different hyphae-inducing conditions to the metabolite profiles of growing yeast cells. Surprisingly our results suggest an overall downregulation of cellular metabolism during the yeast to hyphal morphological transition. Among the metabolic pathways involved in the central carbon metabolism, we have found seventeen that were significantly downregulated in all three hyphae-inducing conditions. This indicates that these central carbon metabolic pathways are likely to be intrinsically involved in the downstream effects of the morphogenetic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggio, R. B. M., Ruggiero, K., & Villas-Bôas, S. G. (2010). Pathway activity profiling (papi): From the metabolite profile to the metabolic pathway activity. Bioinformatics, 26, 2969–2976.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, S., & Ito-kuwa, S. (1982). Respiration of Candida albicans in relation to its morphogenesis. Plant and Cell Physiology, 23, 721–726.

    Google Scholar 

  • Arai, T., Mikami, Y., & Yokoyama, K. (1977). Phagocytosis of Candida albicans by rabbit alveolar macrophages and guinea pig neutrophils. Sabouraudia Journal of Medical and Veterinary Mycology, 15, 171–177.

    Article  CAS  Google Scholar 

  • Banerjee, M., Thompson, D. S., Lazzell, A., Carlisle, P. L., Pierce, C., Monteagudo, C., et al. (2008). UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Molecular Biology of the Cell, 19, 1354–1365.

    Article  PubMed  CAS  Google Scholar 

  • Bendel, C. M., Hess, D. J., Garni, R. M., Henry-Stanley, M., & Wells, C. L. (2003). Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Critical Care Medicine, 31, 501–507.

    Article  PubMed  Google Scholar 

  • Bensen, E. S., Martin, S. J., Li, M., Berman, J., & Davis, D. A. (2004). Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Molecular Microbiology, 54, 1335–1351.

    Article  PubMed  CAS  Google Scholar 

  • Braun, B. R., & Johnson, A. D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science, 277, 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. H., Jr, Giusani, A. D., Chen, X., & Kumamoto, C. A. (1999). Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Molecular Microbiology, 34, 651–662.

    Article  PubMed  CAS  Google Scholar 

  • Carman, A. J., Vylkova, S., & Lorenz, M. C. (2008). Role of acetyl coenzyme a synthesis and breakdown in alternative carbon source utilization in Candida albicans. Eukaryotic Cell, 7, 1733–1741.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Fujita, M., Feng, Q., Clardy, J., & Fink, G. R. (2004). Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National academy of Sciences of the United States of America, 101, 5048–5052.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, G., Yeater, K. M., & Hoyer, L. L. (2006). Cellular and molecular biology of Candida albicans estrogen response. Eukaryotic Cell, 5, 180–191.

    Article  PubMed  CAS  Google Scholar 

  • Doedt, T., Krishnamurthy, S., Bockmühl, D. P., Tebarth, B., Stempel, C., Russell, C. L., et al. (2004). APSES proteins regulate morphogenesis and metabolism in Candida albicans. Molecular Biology of the Cell, 15, 3167–3180.

    Article  PubMed  CAS  Google Scholar 

  • Eisman, B., Alonso-Monge, R., Román, E., Arana, D., Nombela, C., & Pla, J. (2006). The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryotic Cell, 5, 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Enjalbert, B., Smith, D. A., Cornell, M. J., Alam, I., Nicholls, S., Brown, A. J. P., et al. (2006). Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Molecular Biology of the Cell, 17, 1018–1032.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Q., Summers, E., Guo, B., & Fink, G. (1999). Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. Journal of Bacteriology, 181, 6339–6346.

    PubMed  CAS  Google Scholar 

  • Fernández-Arenas, E., Cabezón, V., Bermejo, C., Arroyo, J., Nombela, C., Diez-Orejas, R., et al. (2007). Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Molecular and Cellular Proteomics, 6, 460–478.

    Article  PubMed  Google Scholar 

  • Fradin, C., De Groot, P., MacCallum, D., Schaller, M., Klis, F., Odds, F. C., et al. (2005). Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Molecular Microbiology, 56, 397–415.

    Article  PubMed  CAS  Google Scholar 

  • García-Sánchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J. M., & D’Enfert, C. (2004). Candida albicans biofilms: A developmental state associated with specific and stable gene expression patterns. Eukaryotic Cell, 3, 536–545.

    Article  PubMed  Google Scholar 

  • García-Sánchez, S., Mavor, A. L., Russell, C. L., Argimon, S., Dennison, P., Enjalbert, B., et al. (2005). Global roles of Ssn6 in tup1- And nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Molecular Biology of the Cell, 16, 2913–2925.

    Article  PubMed  Google Scholar 

  • Ghosh, S., Navarathna, D. H. M. L. P., Roberts, D. D., Cooper, J. T., Atkin, A. L., Petro, T. M., et al. (2009). Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infection and Immunity, 77, 1596–1605.

    Article  PubMed  CAS  Google Scholar 

  • Gillum, A. M., Tsay, E. Y. H., & Kirsch, D. R. (1984). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular and General Genetics, 198, 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Han, T. L., Cannon, R. D., & Villas-Bôas, S. G. (2011). The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genetics and Biology, 48(8), 747–763.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, D. A., Vik, A., & Kolter, R. (2004). A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Molecular Microbiology, 54, 1212–1223.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, A. R., & Shepherd, M. G. (1987). Proline-induced germ-tube formation in Candida albicans: Role of proline uptake and nitrogen metabolism. Journal of General Microbiology, 133, 3219–3228.

    PubMed  CAS  Google Scholar 

  • Holmes, A. R., & Shepherd, M. G. (1988). Nutritional factors determine germ tube formation in Candida albicans. Journal of Medical and Veterinary Mycology, 26, 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Hornby, J. M., Jensen, E. C., Lisec, A. D., Tasto, J. J., Jahnke, B., Shoemaker, R., et al. (2001). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and Environmental Microbiology, 67, 2982–2992.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, C. S., Oh, J. H., Huh, W. K., Yim, H. S., & Kang, S. O. (2003). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Molecular Microbiology, 47, 1029–1043.

    Article  PubMed  CAS  Google Scholar 

  • José, C. S., Monge, R. A., Pérez-Díaz, R., Pla, J., & Nombela, C. (1996). The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. Journal of Bacteriology, 178, 5850–5852.

    Google Scholar 

  • Kadosh, D., & Johnson, A. D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Molecular and Cellular Biology, 21, 2496–2505.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews Microbiology, 3, 557–565.

    Article  PubMed  CAS  Google Scholar 

  • Kresnowati, M. T., van Winden, W. A., Almering, M. J., ten Pierick, A., Ras, C., Knijnenburg, T. A., et al. (2006). When transcriptome meets metabolome: Fast cellular responses of yeast to sudden relief of glucose limitation. Molecular Systems Biology [electronic resource], 2, 49.

  • Land, G. A., McDonald, W. C., Stjernholm, R. L., & Friedman, L. (1975). Factors affecting filamentation in Candida albicans: Changes in respiratory activity of Candida albicans during filamentation. Infection and Immunity, 12, 119–127.

    PubMed  CAS  Google Scholar 

  • Lee, K. L., Buckley, H. R., & Campbell, C. C. (1975). An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia Journal of Medical and Veterinary Mycology, 13, 148–153.

    Article  CAS  Google Scholar 

  • Lehninger, A. L. (2005). Lehninger principles of biochemistry. New York: W.H. Freeman.

    Google Scholar 

  • Lingappa, B. T., Prasad, M., Lingappa, Y., Hunt, D. F., & Biemann, K. (1969). Phenethyl alcohol and tryptophol: Autoantibiotics produced by the fungus Candida albicans. Science, 163, 192–194.

    Article  PubMed  CAS  Google Scholar 

  • Lo, H. J., Köhler, J. R., Didomenico, B., Loebenberg, D., Cacciapuoti, A., & Fink, G. R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell, 90, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, M. C., & Fink, G. R. (2001). The glyoxylate cycle is required for fungal virulence. Nature, 412, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, M. C., Bender, J. A., & Fink, G. R. (2004). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryotic Cell, 3, 1076–1087.

    Article  PubMed  CAS  Google Scholar 

  • Maidan, M. M., De Rop, L., Serneels, J., Exler, S., Rupp, S., Tournu, H., et al. (2005a). The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Molecular Biology of the Cell, 16, 1971–1986.

    Article  PubMed  CAS  Google Scholar 

  • Maidan, M. M., Thevelein, J. M., & Van Dijck, P. (2005b). Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochemical Society Transactions, 33, 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Monteoliva, L., Martinez-Lopez, R., Pitarch, A., Hernaez, M. L., Serna, A., Nombela, C., et al. (2011). Quantitative proteome and acidic subproteome profiling of Candida albicans yeast-to-hypha transition. Journal of Proteome Research, 10, 502–517.

    Article  PubMed  CAS  Google Scholar 

  • Montserrat, M.-G., Perumal, P., Mekala, S., Nombela, C., Chaffin, W. L., & Gil, C. (2009). Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics, 9, 2230–2252.

    Article  Google Scholar 

  • Murad, A. M. A., D’Enfert, C., Gaillardin, C., Tournu, H., Tekaia, F., Talibi, D., et al. (2001). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Molecular Microbiology, 42, 981–993.

    Article  PubMed  CAS  Google Scholar 

  • Nickerson, K. W., Atkin, A. L., & Hornby, J. M. (2006). Quorum sensing in dimorphic fungi: Farnesol and beyond. Applied and Environmental Microbiology, 72, 3805–3813.

    Article  PubMed  CAS  Google Scholar 

  • Oh, K. B., Miyazawa, H., Naito, T., & Matsuoka, H. (2001). Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proceedings of the National academy of Sciences of the United States of America, 98, 4664–4668.

    Article  PubMed  CAS  Google Scholar 

  • Pedreño, Y., Maicas, S., Argüelles, J. C., Sentandreu, R., & Valentin, E. (2004). The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans. Journal of Biological Chemistry, 279, 40852–40860.

    Article  PubMed  Google Scholar 

  • Prigneau, O., Porta, A., & Maresca, B. (2004). Candida albicans CTN gene family is induced during macrophage infection: Homology, disruption and phenotypic analysis of CTN3 gene. Fungal Genetics and Biology, 41, 783–793.

    Article  PubMed  CAS  Google Scholar 

  • Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, R., & Braude, A. I. (1956). The filament inducing property of blood for Candida albicans; its nature and significance. Clinical Research Procedure, 4, 40.

    Google Scholar 

  • Romani, L., Bistoni, F., & Puccetti, P. (2003). Adaptation of Candida albicans to the host environment: The role of morphogenesis in virulence and survival in mammalian hosts. Current Opinion in Microbiology, 6, 338–343.

    Article  PubMed  Google Scholar 

  • Rooney, P. J., & Klein, B. S. (2002). Linking fungal morphogenesis with virulence. Cellular Microbiology, 4, 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Rubin-Bejerano, I., Fraser, I., Grisafi, P., & Fink, G. R. (2003). Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proceedings of the National academy of Sciences of the United States of America, 100, 11007–11012.

    Article  PubMed  CAS  Google Scholar 

  • Saville, S. P., Lazzell, A. L., Monteagudo, C., & Lopez-Ribot, J. L. (2003). Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryotic Cell, 2, 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, A., Rupp, S., Taylor, B. N., Röllinghoff, M., & Schröppel, K. (2000). The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Molecular Microbiology, 38, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Singh, V., Satheesh, S. V., Raghavendra, M. L., & Sadhale, P. P. (2007). The key enzyme in galactose metabolism, UDP-galactose-4-epimerase, affects cell-wall integrity and morphology in Candida albicans even in the absence of galactose. Fungal Genetics and Biology, 44, 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Bôas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nature Protocols, 5, 1709–1729.

    Article  PubMed  CAS  Google Scholar 

  • Stichternoth, C., Fraund, A., Setiadi, E., Giasson, L., Vecchiarelli, A., & Ernst, J. F. (2011). Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryotic Cell, 10, 502–511.

    Article  PubMed  CAS  Google Scholar 

  • Stoldt, V. R., Sonneborn, A., Leuker, C. E., & Ernst, J. F. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO Journal, 16, 1982–1991.

    Article  PubMed  CAS  Google Scholar 

  • Strijbis, K., Van Roermund, C. W. T., Visser, W. F., Mol, E. C., Van Den Burg, J., MacCallum, D. M., et al. (2008). Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. Eukaryotic Cell, 7, 610–618.

    Article  PubMed  CAS  Google Scholar 

  • Tournu, H., Tripathi, G., Bertram, G., Macaskill, S., Mavor, A., Walker, L., et al. (2005). Global role of the protein kinase Gcn2 in the human pathogen Candida albicans. Eukaryotic Cell, 4, 1687–1696.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, G., Wiltshire, C., Macaskill, S., Tournu, H., Budge, S., & Brown, A. J. P. (2002). Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO Journal, 21, 5448–5456.

    Article  PubMed  CAS  Google Scholar 

  • Verduyn, C., Postma, E., Scheffers, W. A., & Van Dijken, J. P. (1992). Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8, 501–517.

    Article  PubMed  CAS  Google Scholar 

  • Villas-Bôas, S. G., Åkesson, M., & Nielsen, J. (2005a). Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Research, 5, 703–709.

    Article  PubMed  Google Scholar 

  • Villas-Bôas, S. G., Mas, S., Åkesson, M., Smedsgaard, J., & Nielsen, J. (2005b). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646.

    Article  PubMed  Google Scholar 

  • Villas-Bôas, S. G., Roessner, U., Hansen, M. A. E., Smedsfaard, J., & Nielsen, J. (2007). Metabolome analysis: An introduction. New Jersey: Wiley-Interscience.

    Google Scholar 

  • Visser, D., Van Zuylen, G. A., Van Dam, J. C., Eman, M. R., Pröll, A., Ras, C., et al. (2004). Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnology and Bioengineering, 88, 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Walker, G. M. (1998). Yeast physiology and biotechnology. Chichester: Wiley-Blackwell.

    Google Scholar 

  • Yeater, K. M., Chandra, J., Cheng, G., Mukherjee, P. K., Zhao, X., Rodriguez-Zas, S. L., et al. (2007). Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology, 153, 2373–2385.

    Article  PubMed  CAS  Google Scholar 

  • Yin, Z., Stead, D., Selway, L., Walker, J., Riba-Garcia, I., McInerney, T., et al. (2004). Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics, 4, 2425–2436.

    Article  PubMed  CAS  Google Scholar 

  • Zacchi, L. F., Gomez-Raja, J., & Davis, D. A. (2010). Mds3 regulates morphogenesis in Candida albicans through the TOR pathway. Molecular and Cellular Biology, 30, 3695–3710.

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza, O., Blazquez, M. A., & Gancedo, C. (1998). Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. Journal of Bacteriology, 180, 3809–3815.

    PubMed  CAS  Google Scholar 

  • Zhou, H., & Lorenz, M. C. (2008). Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans. Microbiology, 154, 500–509.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Wagachchi for assisting with sample preparation; and R. Aggio and L. Fearnley for data analysis assistance. This work was supported by Faculty of Science Research Funding, University of Auckland and by the University of Auckland Doctoral Scholarship for Ting-Li Han.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silas G. Villas-Bôas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Tl., Cannon, R.D. & Villas-Bôas, S.G. Metabolome analysis during the morphological transition of Candida albicans . Metabolomics 8, 1204–1217 (2012). https://doi.org/10.1007/s11306-012-0416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0416-6

Keywords

Navigation