Skip to main content
Log in

The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Unique biochemical and physical challenges to both mother and fetus are observed during human pregnancy, and the placenta plays an important role in protecting the fetus and supporting its development. Consequently, many pregnancy complications are associated with altered placental biochemistry and structure. Here we have further developed a combination of analytical tools for determining the tissue metabolome of placental tissue by applying a methanol/water/chloroform extraction method followed by analysis of the polar fraction (methanol/water) using GC–ToF–MS and of the non-polar fraction (chloroform) using UPLC–LTQ–Orbitrap–MS. This combination maximises the number of different metabolites detected and is the first holistic investigation of placental tissue applying UPLC–MS. Placental tissue differs between early and late first trimester pregnancies in that the developing placenta is exposed to significantly different oxygen tensions and undergoes a change from histiotrophic to haemotrophic nutrition. Application of these metabolomic methods detected 156 unique and chemically identified metabolites that showed statistically significant differences (P < 0.05). These included changes in di- and triglycerides, phospholipids, sphingolipids, fatty acids and fatty acid carnitines. This is the first metabolomics study to identify these changes that potentially show the initiation or switch to fatty acid beta-oxidation for mitochondrial ATP production. A separate study showed a small number of changes that were related to the position of sampling of the placental tissue and to the type of delivery from pregnancy. This result indicates that variations associated with sampling position and delivery type are small compared to between-subject variation. However, the authors recommend robust experimental design which may include sampling from the same position of the placenta and from the same delivery type. When comparing tissue from term-uncomplicated pregnancies with those exhibiting preeclampsia at term, 86 unique and chemically identified metabolites showed statistically significant differences (P < 0.05). Potential changes in metabolism operating in the mitochondria, in vitamin D metabolism and in oxidative and nitrative stress were observed. These proof-of-principle studies demonstrate the sensitivity of placental tissue metabolomics to define changes related to alterations in environment and perfusion and related to diseases of pregnancy including preeclampsia. Data are available on request.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, J., Davey, H. M., Broadhurst, D., Heald, J. K., Rowland, J. J., Oliver, S. G., et al. (2003). High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnology, 21, 692–696.

    Article  PubMed  CAS  Google Scholar 

  • Altun, Z. S., Uysal, S., Guner, G., Yilmaz, O., & Posaci, C. (2008). Effects of oral l-arginine supplementation on blood pressure and asymmetric dimethylarginine in stress-induced preeclamptic rats. Cell Biochemistry and Function, 26, 648–653.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, C. M. (2007). Preeclampsia: Exposing future cardiovascular risk in mothers and their children. Jognn-Journal of Obstetric Gynecologic and Neonatal Nursing, 36, 3–8.

    Article  Google Scholar 

  • Atherton, H. J., Gulston, M. K., Bailey, N. J., Cheng, K. K., Zhang, W., Clarke, K., et al. (2009). Metabolomics of the interaction between PPAR-alpha and age in the PPAR-alpha-null mouse. Molecular Systems Biology, 5, 259.

  • Begley, P., Francis-McIntyre, S., Dunn, W. B., Broadhurst, D. I., Halsall, A., Tseng, A., et al. (2009). Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Analytical Chemistry, 81, 7038–7046.

    Article  PubMed  CAS  Google Scholar 

  • Brison, D. R., Hollywood, K., Arnesen, R., & Goodacre, R. (2007). Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting. Reproductive Biomedicine Online, 15, 296–302.

    Article  PubMed  Google Scholar 

  • Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.

    Article  CAS  Google Scholar 

  • Brown, M., Dunn, W. B., Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., et al. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134, 1322–1332.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L.C, et al. (2011) Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics 27, 1108–1112.

    Google Scholar 

  • Burton, G. J., Jauniaux, E., & Charnock-Jones, D. S. (2010). The influence of the intrauterine environment on human placental development. International Journal of Developmental Biology, 54, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Cetin, I., Marconi, A. M., Bozzetti, P., Sereni, L. P., Corbetta, C., Pardi, G., et al. (1988). Umbilical amino acid concentrations in appropriate and small for gestational age infants: a biochemical difference present in utero. American Journal of Obstetrics and Gynecology, 158, 120–126.

    PubMed  CAS  Google Scholar 

  • Colombini, M. (2010). Ceramide channels and their role in mitochondria-mediated apoptosis. Biochimica Et Biophysica Acta-Bioenergetics, 1797, 1239–1244.

    Article  CAS  Google Scholar 

  • Davey, D. A., & Macgillivray, I. (1988). The classification and definition of the hypertensive disorders of pregnancy. American Journal of Obstetrics and Gynecology, 158, 892–898.

    PubMed  CAS  Google Scholar 

  • Deepinder, F., Chowdary, H. T., & Agarwal, A. (2007). Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Review of Molecular Diagnostics, 7, 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Dordevic, N. Z., Babic, G. M., Markovic, S. D., Ognjanovic, B. I., Stajn, A. S., Zikic, R. V., et al. (2008). Oxidative stress and changes in antioxidative defense system in erythrocytes of preeclampsia in women. Reproductive Toxicology, 25, 213–218.

    Article  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011a). Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Halsall, A., McIntyre, S., et al. (2011b). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.

  • Dunn, W. B., Broadhurst, D., Brown, M., Baker, P. N., Redman, C. W. G., Kenny, L. C., et al. (2008). Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-orbitrap mass spectrometry system. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 871, 288–298.

    Article  CAS  Google Scholar 

  • Dunn, W. B., Brown, M., Worton, S. A., Crocker, I. P., Broadhurst, D., Horgan, R., et al. (2009). Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta, 30, 974–980.

    Article  PubMed  CAS  Google Scholar 

  • Gardosi, J., Chang, A., Kalyan, B., Sahota, D., & Symonds, E. M. (1992). Customised antenatal growth charts. Lancet, 339, 286–287.

    Article  Google Scholar 

  • Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M., & Fisher, S. J. (1996). Hypoxia alters early gestation human cytotrophoblast differentiation invasion in vitro and models the placental defects that occur in preeclampsia. Journal of Clinical Investigation, 97, 540–550.

    Article  PubMed  CAS  Google Scholar 

  • Graca, G., Duarte, I. F., Barros, A. S., Goodfellow, B. J., Diaz, S., Carreira, I. M., et al. (2009). H-1 NMR based metabonomics of human amniotic fluid for the metabolic characterization of fetus malformations. Journal of Proteome Research, 8, 4144–4150.

    Article  PubMed  CAS  Google Scholar 

  • Graca, G., Duarte, I. F., Barros, A. S., Goodfellow, B. J., Diaz, S. O., Pinto, J., et al. (2010). Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. Journal of Proteome Research, 9, 6016–6024.

    Article  PubMed  CAS  Google Scholar 

  • Graca, G., Duarte, I. F., Goodfellow, B. J., Barros, A. S., Carreira, I. M., Couceiro, A. B., et al. (2007). Potential of NMR spectroscopy for the study of human amniotic fluid. Analytical Chemistry, 79, 8367–8375.

    Article  PubMed  CAS  Google Scholar 

  • Granger, J. P., Alexander, B. T., Llinas, M. T., Bennett, W. A., & Khalil, R. A. (2002). Pathophysiology of preeclampsia: Linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation, 9, 147–160.

    PubMed  CAS  Google Scholar 

  • Guilbert, J. J. (2003). The world health report 2002—reducing risks, promoting healthy life. Educ Health (Abingdon), 16, 230.

    Article  CAS  Google Scholar 

  • Gupta, R., Maruthy, K. N., Mhaskar, A. M., & Padmanabhan, L. D. (2003). Serum nitrate levels as an index of endothelial function in pre-eclampsia and normal pregnancy. Indian Journal of Physiology and Pharmacology, 47, 185–190.

    PubMed  CAS  Google Scholar 

  • Haugen, M., Brantsaeter, A. L., Trogstad, L., Alexander, J., Roth, C., Magnus, P., et al. (2009). Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology, 20, 720–726.

    Article  PubMed  Google Scholar 

  • Heazell, A. E. P., Brown, M., Dunn, W. B., Worton, S. A., Crocker, I. P., Baker, P. N., et al. (2008). Analysis of the metabolic footprint and tissue metabolome of placental villous explants cultured at different oxygen tensions reveals novel redox biomarkers. Placenta, 29, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Heazell, A. E. P., Brown, M., Worton, S. A., & Dunn, W. B. (2011). Review: The effects of oxygen on normal and pre-eclamptic placental tissue—insights from metabolomics. Placenta, 79, 413–424.

    Google Scholar 

  • Horgan, R. P., Broadhurst, D. I., Dunn, W. B., Brown, M., Heazell, A. E., Kell, D. B., et al. (2009a). Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta, 31, 893–901.

    Article  Google Scholar 

  • Horgan, R. P., Clancy, O. H., Myers, J. E., & Baker, P. N. (2009b). An overview of proteomic and metabolomic technologies and their application to pregnancy research. Bjog-an International Journal of Obstetrics and Gynaecology, 116, 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y. P., Skepper, J. N., & Burton, G. J. (2000). Onset of maternal arterial blood flow and placental oxidative stress—a possible factor in human early pregnancy failure. American Journal of Pathology, 157, 2111–2122.

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008) Metabolomics: A global biochemical approach to drug response and disease, Annual Review of Pharmacology and Toxicology, 653–683.

  • Kaneko-Tarui, T., Zhang, L., Austin, K. J., Henkes, L. E., Johnson, J., Hansen, T. R., et al. (2007). Maternal and embryonic control of uterine sphingolipid-metabolizing enzymes during murine embryo implantation. Biology of Reproduction, 77, 658–665.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B. (2009). Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Medical Genomics 2.

  • Kell, D. B. (2010). Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Archives of Toxicology, 84, 825–889.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews. Microbiology, 3, 557–565.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B., & Westerhoff, H. V. (1986). Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiology Reviews, 39, 305–320.

    Article  CAS  Google Scholar 

  • Kenny, L. C., Broadhurst, D., Brown, M., Dunn, W. B., Redman, C. W., Kell, D. B., et al. (2008). Detection and identification of novel metabolomic biomarkers in preeclampsia. Reprod Sci, 15, 591–597.

    Article  PubMed  CAS  Google Scholar 

  • Kenny, L. C., Broadhurst, D. I., Dunn, W., Brown, M., North, R. A., McCowan, L., et al. (2010). Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension, 56, 741–749.

    Article  PubMed  CAS  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: the Golm metabolome database. Bioinformatics, 21, 1635–1638.

    Article  PubMed  CAS  Google Scholar 

  • Kossenjans, W., Eis, A., Sahay, R., Brockman, D., & Myatt, L. (2000). Role of peroxynitrite in altered fetal-placental vascular reactivity in diabetes or preeclampsia. Am J Physiol Heart Circ Physiol, 278, H1311–H1319.

    PubMed  CAS  Google Scholar 

  • Mizugishi, K., Li, C. L., Olivera, A., Bielawski, J., Bielawska, A., Deng, C. X., et al. (2007). Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. Journal of Clinical Investigation, 117, 2993–3006.

    Article  PubMed  CAS  Google Scholar 

  • Myatt, L. (2010). Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta, 31, S66–S69.

    Article  PubMed  Google Scholar 

  • Neilson, J. P., Lavender, T., Quenby, S., & Wray, S. (2003). Obstructed labour. British Medical Bulletin, 67, 191–204.

    Article  PubMed  CAS  Google Scholar 

  • Page, K. (1993). The physiology of the human placenta (1st ed.). London: Routledge.

    Google Scholar 

  • Palmer, S. K., Moore, L. G., Young, D. A., Cregger, B., Berman, J. C., & Zamudio, S. (1999). Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado. American Journal of Obstetrics and Gynecology, 180, 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar, A., Whitelock, K. A., Weissfeld, L. A., Daftary, A. R., Markovic, N., & Conrad, K. P. (2001). Selective overexpression of the hypoxia-inducible transcription factor, HIF-2 alpha, in placentas from women with preeclampsia. Biology of Reproduction, 64, 499–506.

    PubMed  CAS  Google Scholar 

  • Rampersad, R., & Nelson, D. M. (2007). Trophoblast biology, responses to hypoxia and placental dysfunction in preeclampsia. Frontiers in Bioscience, 12, 2447–2456.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, S., Zender, R., & Kostlin, A. (1956). Biochemistry of placenta extracts. Helv Med Acta, 23, 75–109.

    PubMed  CAS  Google Scholar 

  • Rinaldo, P., O’Shea, J. J., Coates, P. M., Hale, D. E., Stanley, C. A., & Tanaka, K. (1988). Medium-chain acyl-CoA dehydrogenase deficiency. Diagnosis by stable-isotope dilution measurement of urinary n-hexanoylglycine and 3-phenylpropionylglycine. New England Journal of Medicine, 319, 1308–1313.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, C. J., Alanis, M. C., Wagner, C. L., Hollis, B. W., & Johnson, D. D. (2010) Plasma 25-hydroxyvitamin D levels in early-onset severe preeclampsia. American Journal of Obstetrics and Gynecology, 203, 366

    Google Scholar 

  • Romanowicz, L., & Bankowski, E. (2009). Preeclampsia-associated alterations in sphingolipid composition of the umbilical cord artery. Clinical Biochemistry, 42, 1719–1724.

    Article  PubMed  CAS  Google Scholar 

  • Schiessl, B., Strasburger, C., Bidlingmaier, M., Mylonas, I., Jeschke, U., Kainer, F., et al. (2006). Plasma- and urine concentrations of nitrite/nitrate and cyclic Guanosinemonophosphate in intrauterine growth restricted and preeclamptic pregnancies. Archives of Gynecology and Obstetrics, 274, 150–154.

    Article  PubMed  CAS  Google Scholar 

  • Seli, E., Botros, L., Sakkas, D., & Burns, D. H. (2008). Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertility and Sterility, 90, 2183–2189.

    Article  PubMed  Google Scholar 

  • Siskind, L. J. (2005). Mitochondrial ceramide and the induction of apoptosis. Journal of Bioenergetics and Biomembranes, 37, 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  PubMed  CAS  Google Scholar 

  • Soleymanlou, N., Jurisica, I., Nevo, O., Ietta, F., Zhang, X., Zamudio, S., et al. (2005). Molecular evidence of placental hypoxia in preeclampsia. The journal of clinical endocrinology and metabolism, 90, 4299–4308.

    Article  PubMed  CAS  Google Scholar 

  • Speake, P. F., Glazier, J. D., Ayuk, P. T., Reade, M., Sibley, C. P., & D’ Souza, S. W. (2003). l-Arginine transport across the basal plasma membrane of the syncytiotrophoblast of the human placenta from normal and preeclamptic pregnancies. Journal of Clinical Endocrinology and Metabolism, 88, 4287–4292.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S., & Milstien, S. (2002). Sphingosine 1-phosphate, a key cell signaling molecule. Journal of Biological Chemistry, 277, 25851–25854.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Budd, M. A., Efron, M. L., & Isselbac, K. J. (1966). Isovaleric acidemia—a new genetic defect of leucine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 56, 236.

    Google Scholar 

  • Tissot van Patot, M. C., Murray, A. J., Beckey, V., Cindrova-Davies, T., Johns, J., Zwerdlinger, L., et al. (2010). Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298, R166–R172.

    Article  PubMed  Google Scholar 

  • Vadillo-Ortega, F., Perichart-Perera, O., Espino, S., Avila-Vergara, M. A., Ibarra, I., Ahued, R., et al. (2011). Effect of supplementation during pregnancy with l-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial. BMJ, 342, d2901.

    Article  PubMed  Google Scholar 

  • Vaiman, D., Mondon, F., Garces-Duran, A.G., Mignot, T.M., Robert, B., Rebourcet, R., et al. (2005). Hypoxia-activated genes from early placenta are elevated in preeclampsia, but not in intra-uterine growth retardation. BMC Genomics, 6, 111.

  • Webster, R. P., Roberts, V. H., & Myatt, L. (2008). Protein nitration in placenta—functional significance. Placenta, 29, 985–994.

    Article  PubMed  CAS  Google Scholar 

  • Whitridge Williams, J. (2001). Physiology of pregnancy. In F. G. Cunningham, N. F. Gant, K. G. Leveno, L. C. Gilstrap, J. C. Hauth, & K. D. Wenstrom (Eds.), Williams obstetrics (pp. 63–200). New York: McGraw-Hill.

    Google Scholar 

  • Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC–MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. H., Wang, Y. P., & Chen, D. B. (2011). Analysis of nitroso-proteomes in normotensive and severe preeclamptic human placentas. Biology of Reproduction, 84, 966–975.

    Google Scholar 

Download references

Acknowledgements

WBD wishes to thank BBSRC for financial support of The Manchester Centre for Integrative Systems Biology (BBC0082191) and the NIHR and NWDA for financial support of CADET. MB wishes to thank Johnson & Johnson for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warwick B. Dunn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, W.B., Brown, M., Worton, S.A. et al. The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy. Metabolomics 8, 579–597 (2012). https://doi.org/10.1007/s11306-011-0348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0348-6

Keywords

Navigation