Skip to main content
Log in

Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The development of assessment techniques with immediate clinical applicability is a priority for resolving the growing epidemic in metabolic disease. Many imbalances in diet-dependent metabolism are not detectable in the fasted state. Resolving the high inter-individual variability in response to diet requires the development of techniques that can detect metabolic dysfunction at the level of the individual. The intra- and inter-individual variation in lipid metabolism in response to a standardized test meal was determined. Following an overnight fast on three different days, three healthy subjects consumed a test meal containing 40% of their daily calories. Plasma samples were collected at fasting, and 1, 3, 6, and 8 h after the test meal. Plasma fatty acid (FA) concentrations within separated lipid classes and lipoprotein fractions were measured at each time point. The intra-individual variation within each subject across three days was lower than the inter-individual differences among the three subjects for over 50% of metabolites in the triacylglycerol (TG), FA, and phosphatidylcholine (PC) lipid classes at 6 h, and for 25–50% of metabolites across lipid classes at 0, 1, 3, and 8 h. The consistency of response within individuals was visualized by principal component analysis (PCA) and confirmed by ANOVA. Three representative metabolites that discriminated among the three individuals in the apolipoprotein B (ApoB) fraction, TG16:1n7, TG18:2n6, and PC18:3n3, are discussed in detail. The postprandial responses of individuals were unique within metabolites that were individual discriminators (ID) of metabolic phenotype. This study shows that the targeted metabolomic measurement of individual metabolic phenotype in response to a specially formulated lipid challenge is possible even without lead-in periods, dietary and lifestyle control, or intervention over a 3-month period in healthy free-living individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FA:

Fatty acid

TG:

Triacylglycerol

ApoB:

Apolipoprotein B

ApoA:

Apolipoprotein A

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

CE:

Cholesterol ester

DG:

Diacylglycerol

PCA:

Principal component analysis

ID:

Individual discriminators

BMI:

Body mass index

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

References

  • Berry, S. E., Miller, G. J., & Sanders, T. A. (2007). The solid fat content of stearic acid-rich fats determines their postprandial effects. The American Journal of Clinical Nutrition, 85(6), 1486–1494.

    PubMed  CAS  Google Scholar 

  • Blackburn, P., Cote, M., Lamarche, B., et al. (2003a). Impact of postprandial variation in triglyceridemia on low-density lipoprotein particle size. Metabolism: Clinical and Experimental, 52(11), 1379–1386. doi:10.1016/S0026-0495(03)00315-9.

    CAS  Google Scholar 

  • Blackburn, P., Lamarche, B., Couillard, C., et al. (2003b). Contribution of visceral adiposity to the exaggerated postprandial lipemia of men with impaired glucose tolerance. Diabetes Care, 26(12), 3303–3309. doi:10.2337/diacare.26.12.3303.

    Article  PubMed  Google Scholar 

  • Burdge, G. C., Jones, A. E., Frye, S. M., Goodson, L., & Wootton, S. A. (2003). Effect of meal sequence on postprandial lipid, glucose and insulin responses in young men. European Journal of Clinical Nutrition, 57(12), 1536–1544. doi:10.1038/sj.ejcn.1601722.

    Article  PubMed  CAS  Google Scholar 

  • Cassader, M., Gambino, R., Musso, G., et al. (2001). Postprandial triglyceride-rich lipoprotein metabolism and insulin sensitivity in nonalcoholic steatohepatitis patients. Lipids, 36(10), 1117–1124. doi:10.1007/s11745-001-0822-5.

    Article  PubMed  CAS  Google Scholar 

  • Chong, M. F., Fielding, B. A., & Frayn, K. N. (2007). Mechanisms for the acute effect of fructose on postprandial lipemia. The American Journal of Clinical Nutrition, 85(6), 1511–1520.

    PubMed  CAS  Google Scholar 

  • Chung, B. H., Cho, B. H., Liang, P., et al. (2004). Contribution of postprandial lipemia to the dietary fat-mediated changes in endogenous lipoprotein–cholesterol concentrations in humans. The American Journal of Clinical Nutrition, 80(5), 1145–1158.

    PubMed  CAS  Google Scholar 

  • Cohn, J. S., Johnson, E. J., Millar, J. S., et al. (1993). Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. Journal of Lipid Research, 34(12), 2033–2040.

    PubMed  CAS  Google Scholar 

  • Cohn, J. S., McNamara, J. R., Krasinski, S. D., Russell, R. M., & Schaefer, E. J. (1989). Role of triglyceride-rich lipoproteins from the liver and intestine in the etiology of postprandial peaks in plasma triglyceride concentration. Metabolism: Clinical and Experimental, 38(5), 484–490. doi:10.1016/0026-0495(89)90203-5.

    CAS  Google Scholar 

  • Demacker, P. N., Hessels, M., Toenhake-Dijkstra, H., & Baadenhuijsen, H. (1997). Precipitation methods for high-density lipoprotein cholesterol measurement compared, and final evaluation under routine operating conditions of a method with a low sample-to-reagent ratio. Clinical Chemistry, 43(4), 663–668.

    PubMed  CAS  Google Scholar 

  • Diraison, F., Moulin, P., & Beylot, M. (2003). Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes & Metabolism, 29(5), 478–485. doi:10.1016/S1262-3636(07)70061-7.

    Article  CAS  Google Scholar 

  • Fielding, B. A., Callow, J., Owen, R. M., Samra, J. S., Matthews, D. R., & Frayn, K. N. (1996). Postprandial lipemia: The origin of an early peak studied by specific dietary fatty acid intake during sequential meals. The American Journal of Clinical Nutrition, 63(1), 36–41.

    PubMed  CAS  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509.

    PubMed  CAS  Google Scholar 

  • Fuentes, F., Lopez-Miranda, J., Perez-Martinez, P., et al. (2008). Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with alpha-linolenic acid on postprandial endothelial function in healthy men. The British Journal of Nutrition, 100(1), 159–165. doi:10.1017/S0007114508888708.

    Article  PubMed  CAS  Google Scholar 

  • Fusconi, E., Pala, V., Riboli, E., et al. (2003). Relationship between plasma fatty acid composition and diet over previous years in the Italian centers of the European Prospective Investigation into Cancer and Nutrition (EPIC). Tumori, 89(6), 624–635.

    PubMed  CAS  Google Scholar 

  • German, J. B., Bauman, D. E., Burrin, D. G., et al. (2004). Metabolomics in the opening decade of the 21st century: Building the roads to individualized health. The Journal of Nutrition, 134(10), 2729–2732.

    PubMed  CAS  Google Scholar 

  • German, J. B., Roberts, M. A., & Watkins, S. M. (2003). Personal metabolomics as a next generation nutritional assessment. The Journal of Nutrition, 133(12), 4260–4266.

    PubMed  CAS  Google Scholar 

  • Hennig, B., Toborek, M., & McClain, C. J. (2001). High-energy diets, fatty acids and endothelial cell function: Implications for atherosclerosis. Journal of the American College of Nutrition, 20(2, Suppl), 97–105.

    PubMed  CAS  Google Scholar 

  • Higashi, K., Shige, H., Ito, T., et al. (2001). Effect of a low-fat diet enriched with oleic acid on postprandial lipemia in patients with type 2 diabetes mellitus. Lipids, 36(1), 1–6. doi:10.1007/s11745-001-0660-5.

    Article  PubMed  CAS  Google Scholar 

  • Hyson, D. A., Paglieroni, T. G., Wun, T., & Rutledge, J. C. (2002). Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clinical and Applied Thrombosis/Hemostasis, 8(2), 147–155. doi:10.1177/107602960200800211.

    Article  PubMed  CAS  Google Scholar 

  • Karpe, F. (1997). Postprandial lipid metabolism in relation to coronary heart disease. The Proceedings of the Nutrition Society, 56(2), 671–678. doi:10.1079/PNS19970067.

    Article  PubMed  CAS  Google Scholar 

  • Katan, M. B., Deslypere, J. P., van Birgelen, A. P., Penders, M., & Zegwaard, M. (1997). Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. Journal of Lipid Research, 38(10), 2012–2022.

    PubMed  CAS  Google Scholar 

  • Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B., & Smith, D. H. (2004). Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Archives of Internal Medicine, 164(6), 659–663. doi:10.1001/archinte.164.6.659.

    Article  PubMed  Google Scholar 

  • Krajcovicova-Kudlackova, M., Simoncic, R., Bederova, A., Grancicova, E., & Magalova, T. (1997a). Influence of vegetarian and mixed nutrition on selected haematological and biochemical parameters in children. Die Nahrung, 41(5), 311–314. doi:10.1002/food.19970410513.

    Article  PubMed  CAS  Google Scholar 

  • Krajcovicova-Kudlackova, M., Simoncic, R., Klvanova, J., Bederova, A., Babinska, K., & Grancicova, E. (1997b). The plasma profile of fatty acids in vegetarians. Bratislavské Lekárske Listy (Tlacené Vydanie), 98(1), 23–27.

    CAS  Google Scholar 

  • Lemay, D., Zivkovic, A. M., & German, J. B. (2007). Building the bridges to bioinformatics in nutrition research. The American Journal of Clinical Nutrition, 86, 1261–1269.

    PubMed  CAS  Google Scholar 

  • Li, Z., Otvos, J. D., Lamon-Fava, S., et al. (2003). Men and women differ in lipoprotein response to dietary saturated fat and cholesterol restriction. The Journal of Nutrition, 133(11), 3428–3433.

    PubMed  CAS  Google Scholar 

  • Lichtenstein, A. H., Ausman, L. M., Carrasco, W., et al. (1993). Effects of canola, corn, and olive oils on fasting and postprandial plasma lipoproteins in humans as part of a National Cholesterol Education Program Step 2 diet. Arteriosclerosis and Thrombosis, 13(10), 1533–1542.

    PubMed  CAS  Google Scholar 

  • Murphy, M. C., Chapman, C., Lovegrove, J. A., et al. (1996). Meal frequency; does it determine postprandial lipaemia? European Journal of Clinical Nutrition, 50(8), 491–497.

    PubMed  CAS  Google Scholar 

  • Nicolaiew, N., Lemort, N., Adorni, L., et al. (1998). Comparison between extra virgin olive oil and oleic acid rich sunflower oil: Effects on postprandial lipemia and LDL susceptibility to oxidation. Annals of Nutrition and Metabolism, 42(5), 251–260. doi:10.1159/000012741.

    Article  PubMed  CAS  Google Scholar 

  • Ordovas, J. M., Corella, D., Cupples, L. A., et al. (2002). Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL–cholesterol concentrations in a sex-specific manner: The Framingham Study. The American Journal of Clinical Nutrition, 75(1), 38–46.

    PubMed  CAS  Google Scholar 

  • Ordovas, J. M., & Shen, J. (2008). Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. Journal of Periodontology, 79(8, Suppl), 1508–1513. doi:10.1902/jop.2008.080232.

    Article  PubMed  CAS  Google Scholar 

  • Papamichael, C. M., Karatzi, K. N., Papaioannou, T. G., et al. (2008). Acute combined effects of olive oil and wine on pressure wave reflections: Another beneficial influence of the Mediterranean diet antioxidants? Journal of Hypertension, 26(2), 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Paton, C. M., Brandauer, J., Weiss, E. P., et al. (2006). Hemostatic response to postprandial lipemia before and after exercise training. Journal of Applied Physiology, 101(1), 316–321. doi:10.1152/japplphysiol.01363.2005.

    Article  PubMed  CAS  Google Scholar 

  • Potts, J. L., Coppack, S. W., Fisher, R. M., Humphreys, S. M., Gibbons, G. F., & Frayn, K. N. (1995). Impaired postprandial clearance of triacylglycerol-rich lipoproteins in adipose tissue in obese subjects. The American Journal of Physiology, 268(4 Pt 1), E588–E594.

    PubMed  CAS  Google Scholar 

  • Rivellese, A. A., Giacco, R., Annuzzi, G., et al. (2008). Effects of monounsaturated vs. saturated fat on postprandial lipemia and adipose tissue lipases in type 2 diabetes. Clinical Nutrition (Edinburgh, Lothian), 27(1), 133–141. doi:10.1016/j.clnu.2007.07.005.

    Article  CAS  Google Scholar 

  • Scaglioni, S., Veduci, E., Agostoni, C., et al. (2004). Dietary habits and plasma fatty acids levels in a population of Italian children: Is there any relationship? Prostaglandins Leukotrienes and Essential Fatty Acids, 71(2), 91–95. doi:10.1016/j.plefa.2004.01.002.

    Article  CAS  Google Scholar 

  • Schaefer, E. J., Audelin, M. C., McNamara, J. R., et al. (2001). Comparison of fasting and postprandial plasma lipoproteins in subjects with and without coronary heart disease. The American Journal of Cardiology, 88(10), 1129–1133. doi:10.1016/S0002-9149(01)02047-1.

    Article  PubMed  CAS  Google Scholar 

  • Sharrett, A. R., Heiss, G., Chambless, L. E., et al. (2001). Metabolic and lifestyle determinants of postprandial lipemia differ from those of fasting triglycerides: The Atherosclerosis Risk In Communities (ARIC) study. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(2), 275–281.

    PubMed  CAS  Google Scholar 

  • Siepi, D., Marchesi, S., Lupattelli, G., et al. (2002). Postprandial endothelial impairment and reduced glutathione levels in postmenopausal women. Annals of Nutrition and Metabolism, 46(1), 32–37. doi:10.1159/000046750.

    Article  PubMed  CAS  Google Scholar 

  • Silveira, A., Karpe, F., Johnsson, H., Bauer, K. A., & Hamsten, A. (1996). In vivo demonstration in humans that large postprandial triglyceride-rich lipoproteins activate coagulation factor VII through the intrinsic coagulation pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(11), 1333–1339.

    PubMed  CAS  Google Scholar 

  • Silvestre, R., Kraemer, W. J., Quann, E. E., et al. (2008). Effects of exercise at different times on postprandial lipemia and endothelial function. Medicine and Science in Sports and Exercise, 40(2), 264–274.

    Article  PubMed  CAS  Google Scholar 

  • Stampfer, M. J., Krauss, R. M., Ma, J., et al. (1996). A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. Journal of the American Medical Association, 276(11), 882–888. doi:10.1001/jama.276.11.882.

    Article  PubMed  CAS  Google Scholar 

  • Tegner, J., Skogsberg, J., & Bjorkegren, J. (2007). Thematic review series: Systems biology approaches to metabolic and cardiovascular disorders. Multi-organ whole-genome measurements and reverse engineering to uncover gene networks underlying complex traits. Journal of Lipid Research, 48(2), 267–277. doi:10.1194/jlr.R600030-JLR200.

    Article  PubMed  CAS  Google Scholar 

  • Urquiaga, I., Guasch, V., Marshall, G., et al. (2004). Effect of Mediterranean and Occidental diets, and red wine, on plasma fatty acids in humans. An intervention study. Biological Research, 37(2), 253–261.

    Article  PubMed  Google Scholar 

  • van Oostrom, A. J., Sijmonsma, T. P., Verseyden, C., et al. (2003). Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. Journal of Lipid Research, 44(3), 576–583. doi:10.1194/jlr.M200419-JLR200.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, S. M., Hammock, B. D., Newman, J. W., & German, J. B. (2001). Individual metabolism should guide agriculture toward foods for improved health and nutrition. The American Journal of Clinical Nutrition, 74(3), 283–286.

    PubMed  CAS  Google Scholar 

  • Watkins, S. M., Reifsnyder, P. R., Pan, H. J., German, J. B., & Leiter, E. H. (2002). Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. Journal of Lipid Research, 43(11), 1809–1817. doi:10.1194/jlr.M200169-JLR200.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, E. P., Arif, H., Villareal, D. T., Marzetti, E., & Holloszy, J. O. (2008). Endothelial function after high-sugar-food ingestion improves with endurance exercise performed on the previous day. The American Journal of Clinical Nutrition, 88(1), 51–57.

    PubMed  CAS  Google Scholar 

  • Westphal, S., Taneva, E., Kastner, S., et al. (2006). Endothelial dysfunction induced by postprandial lipemia is neutralized by addition of proteins to the fatty meal. Atherosclerosis, 185(2), 313–319. doi:10.1016/j.atherosclerosis.2005.06.004.

    Article  PubMed  CAS  Google Scholar 

  • Zilversmit, D. B. (1979). Atherogenesis: A postprandial phenomenon. Circulation, 60(3), 473–485.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University of California at Davis Graduate Group in Nutrition Block Grant, Jastro Shields Scholarship, and Superfund Training Fellowship to A. M. Zivkovic; supported in part by the National Institute of Environmental Health Sciences (NIEHS) grant R37 ES02710, the NIEHS Superfund Basic Research Program P42 ES04699, the University of California Davis CHARGE Study, Center for Children’s Environmental Health, NIEHS grant P01 ES11269, and the University of California Discovery Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bruce German.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zivkovic, A.M., Wiest, M.M., Nguyen, U. et al. Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. Metabolomics 5, 209–218 (2009). https://doi.org/10.1007/s11306-008-0136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0136-0

Keywords

Navigation