Skip to main content
Log in

Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Isotopomer analysis is a very powerful technique for determining site enrichment with stable isotopes. Such information helps determine the relative flux through metabolic pathways. We have developed 1H NMR detection methods to isotopomer analysis of human rhabdomyosarcoma cells grown in the presence of uniformly 13C-labeled glucose. We show that TOCSY can be used both to identify the isotopomer distributions in a substantial number of key compounds and to determine the site-specific enrichment with good precision. Effects of differential relaxation have been specifically addressed. We have identified and quantified isotopomer distributions in Ala, Lactate, (glycolysis markers), nucleotide riboses (pentose phosphate markers), Asp, Glu and Gln (citric acid cycle and anaplerosis markers) as well as in nucleotide pyrimidine rings. Due to the high sensitivity of proton experiments, a reasonable throughput was achieved using a cold probe on only 3–5 mg dry cell weight. This methodology can be applied to biological system using different labeled precursors to examine their metabolic phenotypes and their response to external perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Abbreviations

PBS:

phosphate buffered saline

TCA:

trichloracetic acid

GC–MS:

gas chromatography mass spectrometry

TOCSY:

total correlation spectroscopy

AXP, GXP, UXP, CXP:

mixed adenosine, guanine, cytosine and uridine phosphates (X=M, D or T).

References

  • Anousis N., Carvalho R.A., Zhao P.Y., Malloy C.R., Sherry A.D. (2004). Compartmentation of glycolysis and glycogenolysis in the perfused rat heart. NMR Biomed. 7, 51–59

    Article  Google Scholar 

  • Birkemeyer C., Luedemann A., Wagner C., Erban A., Kopka J. (2005). Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol. 23, 28–33

    Article  PubMed  CAS  Google Scholar 

  • Bollard M.E., Stanley E.G., Lindon J.C., Nicholson J.K., Holmes E. (2005). NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 18, 143–162

    Article  PubMed  CAS  Google Scholar 

  • Burgess S.C., Carvalho R.A., Merritt M.E., et al. (2001). C-13 isotopomer analysis of glutamate by J-resolved heteronuclear single quantum coherence spectroscopy. Anal. Biochem. 289, 187–195

    Article  PubMed  CAS  Google Scholar 

  • Carvalho R.A., Jeffrey F.M.H., Sherry A.D., Malloy C.R. (1998). C-13 isotopomer analysis of glutamate by heteronuclear multiple quantum coherence total correlation spectroscopy (HMQC-TOCSY). FEBS Lett. 440, 382–386

    Article  PubMed  CAS  Google Scholar 

  • Carvalho R.A., Zhao P., Wiegers C.B., et al. (2001). TCA cycle kinetics in the rat heart by analysis of C-13 isotopomers using indirect H-1 C-13 detection. Am. J. Physiol. Heart Circ. Physiol. 281, H1413–H1421

    PubMed  CAS  Google Scholar 

  • Chatham J.C., Bouchard B., Des Rosiers C. (2003). A comparison between NMR and GCMS C-13-isotopomer analysis in cardiac metabolism. Mol. Cell. Biochem. 249, 105–112

    Article  PubMed  CAS  Google Scholar 

  • Cline G.W., LePine R.L., Papas K.K., Kibbey R.G., Shulman G.I. (2004). C-13 NMR isotopomer analysis of anaplerotic pathways in INS-1 cells. J. Biol. Chem. 279, 44370–44375

    Article  PubMed  CAS  Google Scholar 

  • Des Rosiers C., Lloyd S., Comte B., Chatham J.C. (2004). A critical perspective of the use of C-13-isotopomer analysis by GCMS and NMR as applied to cardiac metabolism. Metab. Eng. 6, 44–58

    Article  PubMed  CAS  Google Scholar 

  • Fan T.W.-M., Bandura L.L., Lane A.N., Higashi R.M. (2005). Metabolomics-edited transcriptomics analysis of se anticancer action in human lung cancer cells. Metabolomics 1, 325–339

    Article  CAS  Google Scholar 

  • Fan T.W.M., Colmer T.D., Lane A.N., Higashi R.M. (1993). Determination of metabolites by H-1-NMR and Gc—analysis for organic osmolytes in crude tissue-extracts. Anal. Biochem. 214, 260–271

    Article  PubMed  CAS  Google Scholar 

  • Fan T.W.M., Higashi R.M., Lane A.N., Jardetzky O. (1986). Combined use of H-1-NMR and GC–MS for metabolite monitoring and in vivo H-1-NMR assignments. Biochim. Biophys. Acta 882, 154–167

    PubMed  CAS  Google Scholar 

  • Fan T.W.M., Lane A.N., Higashi R.M. (2004). The promise of metabolomics in cancer molecular therapeutics. Curr. Opin. Mol. Ther. 6, 584–592

    PubMed  Google Scholar 

  • Foxall P.J.D., Parkinson J.A., Sadler I.H., Lindon J.C., Nicholson J.K. (1993). Analysis of biological-fluids using 600 MHz proton NMR-spectroscopy—application of homonuclear 2-dimensional J-resolved spectroscopy to urine and blood-plasma for spectral simplification and assignment. J. Pharm. Biomed. Anal. 11, 21–31

    Article  PubMed  CAS  Google Scholar 

  • Griffin J.L., O’Donnell J.M., White L.T., Hajjar R.J., Lewandowski E.D. (2000). Postnatal expression and activity of the mitochondrial 2-oxoglutarate-malate carrier in intact hearts. Am. J. Physiol. Cell Physiol. 279, C1704–C1709

    PubMed  CAS  Google Scholar 

  • Heijne W.H.M., Lamers R., van Bladeren P.J., et al. (2005). Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol. Pathol. 33, 425–433

    PubMed  CAS  Google Scholar 

  • Henry P.G., Oz G., Provencher S., Gruetter R. (2003a). Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of C-13 NMR spectra using LC model. NMR Biomed. 16, 400–412

    Article  CAS  Google Scholar 

  • Henry P.G., Tkac I., Gruetter R. (2003b). H-1-localized broadband C-13 NMR spectroscopy of the rat brain in vivo at 9.4 T. Magn. Reson. Med. 50, 684–692

    Article  CAS  Google Scholar 

  • Katz-Brull R., Seger D., Rivenson-Segal D., Rushkin E., Degani H. (2002). Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Can. Res. 62, 1966–1970

    CAS  Google Scholar 

  • Khairallah M., Labarthe F., Bouchard B., et al. (2004). Profiling substrate fluxes in the isolated working mouse heart using C-13-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons. Am. J. Physiol. Heart Circ. Physiol. 286, H1461–H1470

    Article  PubMed  CAS  Google Scholar 

  • Lean C.L., Bourne R., Thompson J.F., et al. (2003). Rapid detection of metastatic melanoma in lymph nodes using proton magnetic resonance spectroscopy of fine needle aspiration biopsy specimens. Melanoma Res. 13, 259–261

    Article  PubMed  Google Scholar 

  • Lewandowski E.D., Johnston D.L., Roberts R. (1991). Effects of inosine on glycolysis and contracture during myocardial-ischemia. Circ. Res. 68, 578–587

    PubMed  CAS  Google Scholar 

  • Lindon J.C., Holmes E., Nicholson J.K. (2004). Metabonomics: systems biology in pharmaceutical research and development. Curr. Opin. Mol. Ther. 6, 265–272

    PubMed  CAS  Google Scholar 

  • Lloyd S.G., Zeng H.D., Wang P.P., Chatham J.C. (2004). Lactate isotopomer analysis by H-1 NMR spectroscopy: consideration of long-range nuclear spin-spin interactions. Magn. Reson. Med. 51, 1279–1282

    Article  PubMed  CAS  Google Scholar 

  • London R.E., Allen D.L., Gabel S.A., DeRose E.F. (1999). Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli. J. Bacteriol. 181, 3562–3570

    PubMed  CAS  Google Scholar 

  • Lu D.H., Mulder H., Zhao P.Y., et al. (2002). C-13 NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc. Natl. Acad. Sci. U.S.A. 99, 2708–2713

    Article  PubMed  CAS  Google Scholar 

  • Marin S., Lee W.N.P., Bassilian S., et al. (2004). Dynamic profiling of the glucose metabolic network in fasted rat hepatocytes using 1,2-C-13(2) glucose. Biochem. J. 381, 287–294

    Article  PubMed  CAS  Google Scholar 

  • Puccetti C., Aureli T., Manetti C., Conti F. (2002). C-13-NMR isotopomer distribution analysis: a method for measuring metabolic fluxes in condensation biosynthesis. NMR Biomed. 15, 404–415

    Article  PubMed  CAS  Google Scholar 

  • Vanzijl P.C.M., Chesnick A.S., Despres D., et al. (1993). In-vivo proton spectroscopy and spectroscopic imaging of (1-C-13)-glucose and its metabolic products. Magn. Reson. Med. 30, 544–551

    Article  CAS  Google Scholar 

  • Vizan P., Boros L.G., Figueras A., et al. (2005). K-ras codon-specific mutations produce distinctive metabolic phenotypes in human fibroblasts. Can. Res. 65, 5512–5515

    Article  CAS  Google Scholar 

  • Zwingmann C., Chatauret N., Leibfritz D., Butterworth R.F. (2003). Selective increase of brain lactate synthesis in experimental acute liver failure: results of a H-1–C-13 nuclear magnetic resonance study. Hepatology 37, 420–428

    Article  PubMed  CAS  Google Scholar 

  • Zwingmann C., Richter-Landsberg C., Leibfritz D. (2001). C-13 isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia 34, 200–212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Laura Bandura for assistance with cell growth. This work was supported by the Kentucky Challenge for Excellence (to ANL). NMR spectra were recorded at the JG Brown Cancer Center NMR Suite supported by the Brown Foundation and NSF EPSCoR grant EPS-0132295 for NMR instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Lane.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM 1 (DOC 1,642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, A.N., Fan, T.W.M. Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics 3, 79–86 (2007). https://doi.org/10.1007/s11306-006-0047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-006-0047-x

Keywords

Navigation