Skip to main content

Advertisement

Log in

Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS

Metabolomics Aims and scope Submit manuscript

Abstract

Profiling of plant secondary metabolites is still a very difficult task. Liquid chromatography (LC) or capillary electrophoresis hyphenated with different kinds of detectors are methods of choice for analysis of polar, thermo labile compounds with high molecular masses. We demonstrate the applicability of LC combined with UV diode array or/and mass spectrometric detectors for the unambiguous identification and quantification of flavonoid conjugates isolated from Arabidopsis thaliana leaves of different genotypes and grown in different environmental conditions. During LC/UV/MS/MS analyses we were able to identify tetra-, tri-, and di-glycosides of kaempferol, quercetin and isorhamnetin. Based on our results we can conclude that due to the co-elution of different chemical compounds in reversed phase HPLC systems the application of UV detectors does not allow to precisely profile all flavonoid conjugates existing in A. thaliana genotypes. Using MS detection it was possible to unambiguously recognize the glycosylation patterns of the aglycones. However, from the mass spectra we could not conclude neither the anomeric form of the C-1 carbon atoms of sugar moieties in glycosidic bonds between sugars or sugar and aglycone nor the position of the second carbon involved in disaccharides. The applicability of collision induced dissociation techniques (CID MS/MS) for structural analyses of the studied group of plant secondary metabolites with two types of analyzers (triple quadrupole or ion trap) was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Scheme 2.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Ablajan K., Abliz Z., Shang X-Y., He J.-M., Zhang R.-P., Shi J.-G. (2006). Structural characterization of flavonol 3,7 di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization mass spectrometry. J. Mass spectrum. 41: 352–360

    Article  CAS  Google Scholar 

  • Aguilar-Sanchez R., Ahuatl-Garcia F., Davila-Jimenez M.M., Elizalde-Gonzalez M.P., Guevara-Villa M.R.G. (2005). Chromatographic and electrochemical determination of quercetin and kaempferol in phytopharmaceuticals. J. Pharm. Biomed. Anal. 38:239–249

    Article  PubMed  CAS  Google Scholar 

  • Bloor S.J., Abrahams S. (2002). The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 59: 343–346

    Article  PubMed  CAS  Google Scholar 

  • BuerC.S., Muday G.K. (2004). The transparent testa4 mutation prevents flavonoids synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Cuyckens F., Claeys M. (2004). Mass spectrometry in structural analysis of flavonoids. J. Mass Spectrom. 39: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Cuyckens F., Claeys M. (2005). Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules. J. Mass Spectrom. 40: 364–372

    Article  PubMed  CAS  Google Scholar 

  • D’Auria J.C., Gershenzon J. (2005). The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 8: 308–316

    Article  PubMed  CAS  Google Scholar 

  • de Rijke E., Zappey H., Ariese F., Gooijer C., Brinkman U.A.T. (2003). Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments. J. Chromatogr. A 984: 45–58

    Article  PubMed  Google Scholar 

  • de Rijke E., Zappey H., Ariese F., Gooijer C., Brinkman U.A.T. (2004). Flavonoids in Leguminosae: Analysis of extracts of T. pratense L., T. dubium L., T. repens L., and L. corniculatus L. leaves using liquid chromatography with UV, mass spectrometric and fluorescence detection. Anal. Bioanal. Chem. 378: 995–1006

    Article  PubMed  CAS  Google Scholar 

  • Dixon R.A., Paiva N.L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Dixon R.A., Steel C.L. (1999). Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci. 4: 394–400

    Article  PubMed  Google Scholar 

  • Dixon R.A., Strack D. (2003). Phytochemistry meets genome analysis and beyond. Phytochemistry 62: 815–816

    Article  PubMed  CAS  Google Scholar 

  • Domon B., Costello C.E. (1988). A systematic nomenclature for carbohydrate fragmentations in FAB MS/MS spectra of glycoconjugates. Glycoconj. J. 5: 397–409

    Article  CAS  Google Scholar 

  • Fernie A.R., Trethewey R.N., Krotzky A.J., Willmitzer L. (2004). Metabolite profiling: from diagnostic to systems biology. Nat. Rev. Mol. Cell Biol. 5: 763–769

    Article  PubMed  CAS  Google Scholar 

  • Graham T.L. (1998). Flavonoid and flavonolglycoside metabolism in Arabidopsis. Plant Physiol. Biochem. 36: 135–144

    Article  CAS  Google Scholar 

  • Harborne J.B.,, Williams C.A. (2000). Advances in flavonoids research since 1992. Phytochemistry 55: 481–504

    Article  PubMed  CAS  Google Scholar 

  • Hvattum E., Ekeberg D. (2003). Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 38: 43–49

    Article  PubMed  CAS  Google Scholar 

  • Jennings K.R. (1996). MS/MS instrumentation. In: Newton R.P., Walton T.J. (eds), Applications of Modern Mass Spectrometry in Plant Sciences. Clarendon Press, Oxford, pp. 25–43

    Google Scholar 

  • Jones P., Messner B., Nakajima J.-I., Schaffner A.R., Saito K. (2003). UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 278: 43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Justesen U., Knuthesen P., Leth T. (1998). Quantitative analysis of flavonols, flavones and flavanones in fruits vegetables and beverages by high-performance liquid chromatography with photodiode array and mass spectrometric detection. J. Chromatogr. A 799: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Kachlicki P., Marczak Ł., Kerhoas L., Einhorn J., Stobiecki M. (2005). Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. J. Mass Spectrom. 40: 1088–1103

    Article  PubMed  CAS  Google Scholar 

  • Kerhoas, L., Aouak, D., Cingöz, A., Routaboul, J.-M., Lepiniec, L., Einhorn, J. and Birlirakis, N. Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds. J. Agric. Food Chem. (accepted).

  • Kliebenstein D.J., Rowe H.C., Denby K.J. (2005). Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J. 44: 25–36

    Article  PubMed  CAS  Google Scholar 

  • Laundry L.G., Chapple C.C.S.,, Last R. (1995). Arabidopsis mutants lacking phenolic sun screens exhibit enhanced ultraviolet-B injury oxidative damage. Plant Physiol. 109: 1159–1166

    Article  Google Scholar 

  • Lee J.S., Kim D.H., Liu K.H., Oh T.K., Lee C.H. (2005). Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library. Rapid Commun. Mass Spectrom. 19: 3539–3548

    Article  PubMed  CAS  Google Scholar 

  • Le Gall G., DuPont M.S., Mellon F.A., Davis A.L., Collins G.J., Verhoyen M.E., Colquhoun I.J. (2003). Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem. 51: 2438–2446

    Article  PubMed  CAS  Google Scholar 

  • Le Gall G., Metzdorff S.B., Pedersen J., Bennett R.N. and Colquhoun I.J. (2005) Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene. Metabolomics 1: 181–197

    Article  CAS  Google Scholar 

  • Ma Y.-L., Vadernikova L., Van den Heuvel H.,, Claeys M. (2000). Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J. Am. Soc. Mass Spectrom. 11: 136–144

    Article  PubMed  CAS  Google Scholar 

  • March R.E., Miao X.-S., Metcalfe C.D., Stobiecki M., Marczak Ł. (2004). A fragmentation study of an isoflavone glycoside genistein-7-O-glucoside, using quadrupole time of flight mass spectrometry at high mass resolution. Intern. J. Mass Spectrom. 232: 171–183

    Article  CAS  Google Scholar 

  • Mehrtens F., Kranz H., Bednarek P., Weisshaar B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 138:1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Nair R.B., Bastress K.L., Ruegger M.O., Denault J.W., Chapple C. (2004). The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16: 544–554

    Article  PubMed  CAS  Google Scholar 

  • Niessen W.M.A. (1999). Liquid Chromatography – Mass Spectrometry, Second Edition. Marcel Dekker Inc., New York

    Google Scholar 

  • Pelletier, M.K., Burbulis I.E., Winkel-Shirley B. (1999). Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products. Plant Mol. Biol. 40: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Pietta P.G. (2000). Flavonoids as antioxidants. J. Nat. Prod. 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Pourcel L., Routaboul J-M., Kerhoas L., Caboche M., Lepiniec L. (2005). TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17: 2966–2980

    Article  PubMed  CAS  Google Scholar 

  • Prasain J.K., Wang C-C., Barnes S. (2004). Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radic. Biol. Med. 37: 1324–1350

    Article  PubMed  CAS  Google Scholar 

  • Roessner U., Willmitzer L., Fernie A.R. (2001). High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol. 127: 749–764

    Article  PubMed  CAS  Google Scholar 

  • Rogers L.A., Dubos C., Surman C., Willment J., Cullis I.F., Mansfield S.D.,, Campbell M.M. (2005). Comparison of lignin deposition in three ectopic lignification mutants. New Phytol. 168:123–140

    Article  PubMed  CAS  Google Scholar 

  • Routaboul, J-M., Kerhoas, L., Debeaujon, I., Pourcel, L., Caboche, M., Einhorn, J. and Lepiniec L. (2006). Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224, 96–107.

    Article  PubMed  CAS  Google Scholar 

  • Simeon N., Myers R., Bayle C., Nertz M., Stewart J.K., Couderc F. (2001). Some applications of near-ultraviolet laser-induced fluorescence detection in nanomolar- and subnanomolar-range high-performance liquid chromatography or micro-high-performance liquid chromatography. J. Chromatogr. A. 973: 253–259

    Article  Google Scholar 

  • Stafford H. (1990). Flavonoid metabolism. CRC Press Inc, Boca Raton

    Google Scholar 

  • Stobiecki M. (2000). Review – Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochemistry 54: 237–256

    Article  PubMed  CAS  Google Scholar 

  • Stobiecki M., Kachlicki P. (2005). Metabolomics and metabolite profiling – can we achieve the goal? Acta Physiol. Plant. 27: 109–116

    Article  CAS  Google Scholar 

  • Stobiecki M., Kachlicki P. (2006). Isolation and identification of flavonoids. In: Grotevold E. (eds), The Science of Flavonoids. Springer Science and Business Media, New York, pp. 47–69

    Google Scholar 

  • Sumner L.W., Mendes P., Dixon R.A. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era, Phytochemistry 62: 817–836

    Article  PubMed  CAS  Google Scholar 

  • Taylor L.P., Grotewold E. (2005). Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 8: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Tohge T., Nishiyama Y., Hirai M.Y., Yano M., Nakajima J.-I., Awazuhara M., Inoue E., Takahashi H., Goodenowe D.B., Kitayama M., Noji M., Yamazaki M., Saito K. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42: 218–235

    Article  PubMed  CAS  Google Scholar 

  • Van Etten H.D., MansfieldJ.W., Bailey J.A., Farmer E.E. (1994). Two classes of plan antibiotics: phytoalexins versus phytoanticipines. Plant Cell 6: 1191–1192

    Article  Google Scholar 

  • Veit M., Pauli G.F. (1999). Major flavonoids from Arabidopsis thaliana leaves. J. Nat. Prod. 62: 1301–1303

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R., Memelink J. (2002). Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 13:181–187

    Article  PubMed  CAS  Google Scholar 

  • von Roepenack-Lahaye E., Degenkolb T., Zerjeski M., Franz M., Roth U., Wessjohann L., Schmidt J., Scheel D., Clemens S. (2004). Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol. 134: 548–599

    Article  CAS  Google Scholar 

  • Waridel P., Wolfender J-L., Ndjoko K., Hobby K.R., Major H.J., Hostettmann K. (2001). Evaluation of quadrupole time of flight tandem mass spectrometry and ion trap multiple-stage mass spectrometry for differentiation of C-glycosidic flavonoid isomers. J. Chromatogr. A 926: 29–41

    Article  PubMed  CAS  Google Scholar 

  • Zhang J.M., Brodbelt J.S. (2005). Silver complexation and tandem mass spectrometry for differentiation of isomeric flavonoid diglycosides. Anal. Chem. 77: 1761–1770

    Article  PubMed  CAS  Google Scholar 

  • Zhang J.M., Wang J.M., Brodbelt J.S. (2005). Characterization of flavonoids by aluminum complexation and collisionally activated dissociation. J. Mass Spectrom. 40: 350–363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly thank Matthew Hannah for improving our English, and Dr. Karin Koehl and her colleagues from the Green Team for expert plant care. Both are at the MPI of Molecular Plant Physiology, Golm.

Acknowledgement of financial support: Aleksandra Skirycz gratefully acknowledges the Ernst Schering Foundation, Berlin, for providing a doctoral fellowship. Additional financial support was provided through the International PhD Programme ’Integrative Plant Science’ (IPP-IPS) funded by the DAAD (Deutscher Akademischer Austauschdienst) and the DFG (Deutsche Forschungsgemeinschaft) under No. DAAD Az. D/04/01336, by the Interdisciplinary Research Centre ’Advanced Protein Technologies’ (IZ-APT) of the University of Potsdam, and by the Fonds der Chemischen Industrie (No. 0164389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stobiecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stobiecki, M., Skirycz, A., Kerhoas, L. et al. Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics 2, 197–219 (2006). https://doi.org/10.1007/s11306-006-0031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-006-0031-5

Keywords

Navigation