Skip to main content

Advertisement

Log in

Potential role of P2X7R in esophageal squamous cell carcinoma proliferation

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Esophageal cancer is an aggressive tumor and is the sixth leading cause of cancer death worldwide. ATP is well known to regulate cancer progression in a variety of models by different mechanisms, including P2X7R activation. This study aimed to evaluate the role of P2X7R in esophageal squamous cell carcinoma (ESCC) proliferation. Our results show that treatment with high ATP concentrations induced a decrease in cell number, cell viability, number of polyclonal colonies, and reduced migration of ESCC. The treatment with the selective P2X7R antagonist A740003 or siRNA for P2X7 reverted this effect in the KYSE450 cell line. In addition, results showed that P2X7R is highly expressed, at mRNA and protein levels, in KYSE450 lineage. Additionally, KYSE450, KYSE30, and OE21 cells express P2X3R, P2X4R, P2X5R, P2X6R, and P2X7R genes. P2X1R is expressed by KYSE30 and KYSE450, and only KYSE450 expresses the P2X2R gene. Furthermore, esophageal cancer cell line KYSE450 presented higher expression of E-NTPDases 1 and 2 and of Ecto-5′-NT/CD73 when compared to normal cells. This cell line also exhibits ATPase, ADPase, and AMPase activity, although in different levels, and the co-treatment of apyrase was able to revert the antiproliferative effects of ATP. Moreover, results showed high immunostaining for P2X7R in biopsies of patients with esophageal carcinoma, indicating the involvement of this receptor in the growth of this type of cancer. The results suggest that P2X7R may be a potential pharmacological target to treat ESCC and can lead us to further investigate the effect of this receptor in cancer cell progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y, Pan T, Zhong X, Cheng C (2014) Nicotine upregulates microRNA-21 and promotes TGF-beta-dependent epithelial-mesenchymal transition of esophageal cancer cells. Tumour Biol 35(7):7063–7072. doi:10.1007/s13277-014-1968-z

    Article  CAS  PubMed  Google Scholar 

  2. Instituto Nacional de Câncer José de Alencar Gomes da Silva (2015) Estimate (2016) - Cancer Incidence in Brazil. Rio de Janeiro, INCA

  3. Dawsey SM, Fagundes RB, Jacobson BC, Kresty LA, Mallery SR, Paski S, van den Brandt PA (2014) Diet and esophageal disease. Ann N Y AcadSci 1325:127–137. doi:10.1111/nyas.12528

    Article  Google Scholar 

  4. Morita M, Kumashiro R, Kubo N, Nakashima Y, Yoshida R, Yoshinaga K, Saeki H, Emi Y, KakejiY SY, Toh Y, Maehara Y (2010) Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: epidemiology, clinical findings, and prevention. Int J ClinOncol 15(2):126–134. doi:10.1007/s10147-010-0056-7

    Google Scholar 

  5. Verschuur EM, Siersema PD (2010) Diagnostics and treatment of esophageal cancers. NedTijdschrTandheelkd 117(9):427–431

    CAS  Google Scholar 

  6. Dandara C, Li DP, Walther G, Parker MI (2006) Gene-environment interaction: the role ofSULT1A1 and CYP3A5 polymorphisms as risk modifiers for squamous cell carcinoma of the oesophagus. Carcinogenesis 27(4):791–797. doi:10.1093/carcin/bgi257

    Article  CAS  PubMed  Google Scholar 

  7. Ferlay J, Soerjomataram I, Ervik M, (2013) GLOBOCAN 2012 cancer incidence and mortality worldwide: IARC cancer base no. 11. International Agency for Research on Cancer. Accessed Jan 2016

  8. Rubenstein JH, Shaheen NJ (2015) Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology 149(2):302–317. doi:10.1053/j.gastro.2015.04.053

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siewert JR, Stein HJ, Feith M, Bruecher BL, Bartels H, Fink U (2001) Histologic tumor type is an independent prognostic parameter in esophageal cancer: lessons from more than 1,000 consecutive resections at a single center in the Western world. Ann Surg 234(3):360–367 discussion 368-369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y (2013) Epidemiology of esophageal cancer. World J Gastroenterol 19(34):5598–5606. doi:10.3748/wjg.v19.i34.5598

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu L, Herman JG, Brock MV, Wu K, Mao G, Yan W, Nie Y, Liang H, Zhan Q, Li W, Guo M (2014) Silencing DACH1 promotes esophageal cancer growth by inhibiting TGF-beta signaling. PLoS One 9(4):e95509. doi:10.1371/journal.pone.0095509PONE-D-14-06744

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yao R, Chen Z, Zhou C, Luo M, Shi X, Li J, Gao Y, Zhou F, Pu J, Sun H, He J (2015) Xerophilusin B induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma cells and does not cause toxicity in nude mice. J Nat Prod 78(1):10–16. doi:10.1021/np500429w

    Article  CAS  PubMed  Google Scholar 

  13. Xue L, Yang L, Jin ZA, Gao F, Kang JQ, Xu GH, Liu B, Li H, Wang XJ, Liu LJ, Wang BL, Liang SH, Ding J (2014) Increased expression of HSP27 inhibits invasion and metastasis in human esophageal squamous cell carcinoma. TumourBiol 35(7):6999–7007. doi:10.1007/s13277-014-1946-5

    CAS  Google Scholar 

  14. Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72(21):5441–5447. doi:10.1158/0008-5472.CAN-12-1600

    Article  CAS  PubMed  Google Scholar 

  15. Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal. doi:10.1007/s11302-013-9372-5

    Google Scholar 

  16. Bastid J, Regairaz A, Bonnefoy N, Dejou C, Giustiniani J, Laheurte C, Cochaud S, Laprevotte E, Funck-Brentano E, Hemon P, Gros L, Bec N, Larroque C, Alberici G, Bensussan A, Eliaou JF (2015) Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer immunology research 3(3):254–265. doi:10.1158/2326-6066.CIR-14-0018

    Article  CAS  PubMed  Google Scholar 

  17. White N, Burnstock G (2006) P2 receptors and cancer. Trends PharmacolSci 27(4):211–217. doi:10.1016/j.tips.2006.02.004

    Article  CAS  Google Scholar 

  18. Di Virgilio F, Ferrari D, Adinolfi E (2009) P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 5(2):251–256. doi:10.1007/s11302-009-9145-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larsson KP, Hansen AJ, Dissing S (2002) The human SH-SY5Y neuroblastoma cell-line expresses a functional P2X7 purinoceptor that modulates voltage-dependent Ca2+ channel function. J Neurochem 83(2):285–298

    Article  CAS  PubMed  Google Scholar 

  20. Gartland A, Hipskind RA, Gallagher JA, Bowler WB (2001) Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 16(5):846–856. doi:10.1359/jbmr.2001.16.5.846

    Article  CAS  PubMed  Google Scholar 

  21. Greig AV, Linge C, Healy V, Lim P, Clayton E, Rustin MH, McGrouther DA, Burnstock G (2003) Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. J Invest Dermatol 121(2):315–327. doi:10.1046/j.1523-1747.2003.12379.x

    Article  CAS  PubMed  Google Scholar 

  22. Calvert RC, Shabbir M, Thompson CS, Mikhailidis DP, Morgan RJ, Burnstock G (2004) Immunocytochemical and pharmacological characterisation of P2-purinoceptor-mediated cell growth and death in PC-3 hormone refractory prostate cancer cells. Anticancer Res 24(5A):2853–2859

    CAS  PubMed  Google Scholar 

  23. Slater M, Scolyer RA, Gidley-Baird A, Thompson JF, Barden JA (2003) Increased expression of apoptotic markers in melanoma. Melanoma Res 13(2):137–145. doi:10.1097/01.cmr.0000056225.78713.42

    Article  CAS  PubMed  Google Scholar 

  24. Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH (2015) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta 1848(10 Pt B):2584–2602. doi:10.1016/j.bbamem.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  25. Tamajusuku AS, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AM, Wink MR, Lenz G (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109(5):983–991. doi:10.1002/jcb.22478

    Article  CAS  PubMed  Google Scholar 

  26. Gehring MP, Pereira TC, Zanin RF, Borges MC, Filho AB, Battastini AM, Bogo MR, Lenz G, Campos MM, Morrone FB (2012) P2X7 receptor activation leads to increased cell death in a radiosensitive human glioma cell line. Purinergic Signal 8(4):729–739. doi:10.1007/s11302-012-9319-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. White N, Butler PE, Burnstock G (2005) Human melanomas express functional P2X(7)receptors. Cell Tissue Res 321(3):411–418. doi:10.1007/s00441-005-1149-x

    Article  CAS  PubMed  Google Scholar 

  28. Fang J, Chen X, Zhang L, Chen J, Liang Y, Li X, Xiang J, Wang L, Guo G, Zhang B, Zhang W (2013) P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway. Int J Biochem Cell Biol 45(6):1109–1120. doi:10.1016/j.biocel.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Wang L, Feng YH, Li X, Zeng R, Gorodeski GI (2004) P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am J Physiol Cell Physiol 287(5):C1349–C1358. doi:10.1152/ajpcell.00256.200400256.2004

    Article  CAS  PubMed  Google Scholar 

  30. Ryu JK, Jantaratnotai N, Serrano-Perez MC, McGeer PL, McLarnon JG (2011) Block ofpurinergic P2X7R inhibits tumor growth in a C6 glioma brain tumor animal model. Journal ofneuropathology and experimental neurology 70(1):13–22. doi:10.1097/NEN.0b013e318201d4d4

    Article  CAS  Google Scholar 

  31. Adinolfi E, Capece M, Franceschini A, Falzoni S, Giuliani AL, Rotondo A, Sarti AC, Bonora M, Syberg S, Corigliano D, Pinton P, Jorgensen NR, Abelli L, Emionite L, Raffaghello L, Pistoia V, DiVirgilio F (2015) Accelerated tumor progression in mice lacking the ATP receptor P2X7. Cancer Res 75(4):635–644. doi:10.1158/0008-5472.CAN-14-1259

    Article  CAS  PubMed  Google Scholar 

  32. Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14(1):203. doi:10.1186/s12943-015-0472-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vazquez-Cuevas FG, Martinez-Ramirez AS, Robles-Martinez L, Garay E, Garcia-Carranca A, Perez-Montiel D, Castaneda-Garcia C, Arellano RO (2014) Paracrine stimulation of P2X7 receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J Cell Biochem 115(11):1955–1966. doi:10.1002/jcb.24867

    CAS  PubMed  Google Scholar 

  34. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157(2):375–380

    Article  CAS  PubMed  Google Scholar 

  35. Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J 20(22):6347–6358. doi:10.1093/emboj/20.22.6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    CAS  PubMed  Google Scholar 

  37. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3(7):e2599. doi:10.1371/journal.pone.0002599

    Article  PubMed  PubMed Central  Google Scholar 

  38. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi:10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577. doi:10.1126/science.1208347

    Article  CAS  PubMed  Google Scholar 

  40. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29(39):5346–5358. doi:10.1038/onc.2010.292

    Article  CAS  PubMed  Google Scholar 

  41. Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, Seror C, Metivier D, Perfettini JL, Zitvogel L, Kroemer G (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8(22):3723–3728

    Article  CAS  PubMed  Google Scholar 

  42. Ohshima Y, Tsukimoto M, Takenouchi T, Harada H, Suzuki A, Sato M, Kitani H, Kojima S (2010) Gamma-irradiation induces P2X(7) receptor-dependent ATP release from B16 melanoma cells. Biochim Biophys Acta 1800(1):40–46. doi:10.1016/j.bbagen.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  43. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. doi:10.1007/s11302-006-9003-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. doi:10.1152/physrev.00015.2002

    Article  CAS  PubMed  Google Scholar 

  45. Bianco F, Colombo A, Saglietti L, Lecca D, Abbracchio MP, Matteoli M, Verderio C (2009) Different properties of P2X(7) receptor in hippocampal and cortical astrocytes. Purinergic Signal 5(2):233–240. doi:10.1007/s11302-009-9137-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys ResCommun 332(1):17–27. doi:10.1016/j.bbrc.2005.04.087

    Article  CAS  Google Scholar 

  47. Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, Callegari MG, Sandona D, Markwardt F, Schmalzing G, Di Virgilio F (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24(9):3393–3404. doi:10.1096/fj. 09-153601

    Article  CAS  PubMed  Google Scholar 

  48. Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X purinoceptors. Cell Death Differ 5(3):191–199. doi:10.1038/sj.cdd.4400341

    Article  CAS  PubMed  Google Scholar 

  49. Gehring MP, Kipper F, Nicoletti NF, Sperotto ND, Zanin R, Tamajusuku AS, Flores DG, Meurer L, Roesler R, Filho AB, Lenz G, Campos MM, Morrone FB (2015) P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 68:92–100. doi:10.1016/j.biocel.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  50. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, Perfettini JL, Schlemmer F, Tasdemir E, Uhl M, Genin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, Andre F, Lidereau R, McLaughlin NM, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178. doi:10.1038/nm.2028

    Article  CAS  PubMed  Google Scholar 

  51. Boldrini L, Giordano M, Ali G, Melfi F, Romano G, Lucchi M, Fontanini G (2015) P2X7 mRNA expression in non-small cell lung cancer: microRNA regulation and prognostic value. Oncol Lett 9(1):449–453. doi:10.3892/ol.2014.2620

    PubMed  Google Scholar 

  52. Roger S, Pelegrin P (2011) P2X7 receptor antagonism in the treatment of cancers. Expert Opin Investig Drugs 20(7):875–880. doi:10.1517/13543784.2011.583918

    Article  CAS  PubMed  Google Scholar 

  53. Kwon JH, Nam ES, Shin HS, Cho SJ, Park HR, Kwon MJ (2014) P2X7 receptor expression in coexistence of papillary thyroid carcinoma with Hashimoto's thyroiditis. Korean J Pathol 48(1):30–35. doi:10.4132/KoreanJPathol. 2014.48.1.30

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lin EW, Karakasheva TA, Hicks PD, Bass AJ, Rustgi AK (2016) The tumor microenvironment in esophageal cancer. Oncogene. doi:10.1038/onc.2016.34

    Google Scholar 

  55. O'Sullivan KE, Phelan JJ, O'Hanlon C, Lysaght J, O'Sullivan JN, Reynolds JV (2014) The role of inflammation in cancer of the esophagus. Expert Rev Gastroenterol Hepatol 8(7):749–760. doi:10.1586/17474124.2014.913478

    Article  PubMed  Google Scholar 

  56. Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M (2005) Cell migration and invasion assays. Methods 37:208–215

    Article  CAS  PubMed  Google Scholar 

  57. Welter-Stahl L, Silva CM, Schachter J, Persechini PM, Soza HS, Ojcius DM, Coutinho-Silva R (2009) Expression of purinergic receptors and modulation of P2X7 function by the inflammatory cytokine IFNY in human epithelial cells. Biochim Biophys Acta 1788:1176–1187

    Article  CAS  PubMed  Google Scholar 

  58. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signaling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  59. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacological & Therapeutics 87:161–173

    Article  CAS  Google Scholar 

  60. Wei W, Ryu JK, Choi HB, McLarmon JG (2008) Expression and function of the P2X7 receptor in rat C6 glioma cells. Cancer Lett 260(1):79–78

    Article  CAS  PubMed  Google Scholar 

  61. Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, Goré J, Jiang LH, Roger S (2013) Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis 34(7):1487–1496

    Article  CAS  PubMed  Google Scholar 

  62. Ghalali A, Wiklund F, Zheng H, Stenius U, Högberg J (2014) Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis 35(7):1547–1555

    Article  CAS  PubMed  Google Scholar 

  63. Jelassi B, Chantôme A, Alcaraz-Pérez F, Baroja-Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S (2011 May 5) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30(18):2108–2122

    Article  CAS  PubMed  Google Scholar 

  64. Morrone FB, Gehring MP, Nicoletti Natália F (2016) Calcium channels in malignant brain tumors. Mol Pharmacol 90(3):403–409

    Article  CAS  PubMed  Google Scholar 

  65. Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, Wink M, Azambuja AA, Barrios CH, Morrone FB, Battastini AMO (2010) Differential ectonucleotidase expression in human bladder cancer cell lines. Urology Oncology 28:260–267

    Article  CAS  Google Scholar 

  66. Maaser K, Höpfner M, Kap H, Sutter AP, Barthel B, von Lampe B, Zeitz M, Scherübl H (2002) Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br Jn 86(4):636–644

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES and CNPq scholarships, PUCRS, and FINEP research grant “Implantação, Modernização e Qualificação de Estrutura de Pesquisa da PUCRS” (PUCRSINFRA) no. 01.11.0014-00. We would like to thank Dr. Guido Lenz from UFRGS for P2X7R antibody donation, Dr. Mohamed I Parker from ICGEB, Dr. Ana Maria O. Battastini from UFRGS, and Dr. Maria Martha Campos from PUCRS for their intellectual and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda B Morrone.

Ethics declarations

Conflicts of interest

André A Santos Jr declares that he has no conflict of interest.

Angélica R Cappellari declares that she has no conflict of interest.

Fernanda O de Marchi declares that she has no conflict of interest.

Marina P Gehring declares that she has no conflict of interest.

Aline Zaparte declares that she has no conflict of interest.

Caroline A Brandão declares that she has no conflict of interest.

Tiago Giuliani Lopes declares that he has no conflict of interest.

Luis Felipe Ribeiro Pinto that he has no conflict of interest.

Vinicius Duval da Silva declares that he has no conflict of interest.

Robson Coutinho-Silva declares that he has no conflict of interest.

Juliano D Paccez declares that she has no conflict of interest.

Luiz F Zerbini declares that he has no conflict of interest.

Fernanda B Morrone declares that she has no conflict of interest.

Ethical approval

Histological samples of human ESCC and esophageal tissue samples of patients with esophagitis were collected, between July and December 2015, from patients who underwent endoscopic procedures with biopsies and/or surgical resection at Pontificia Universidade Católica do Rio Grande do Sul (PUCRS, Porto Alegre, Brazil). The diagnosis was reviewed by two certified pathologists with at least 20-year experience in surgical pathology. Samples were obtained in accordance with approved ethical standards of the Institutional Research Ethics Committee (CAAE 4969 6115.0.0000.5336).

Electronic supplementary material

Fig. S1

ATP reduces the cell migration in KYSE450 cancer cell line. (A) Representative images of ATP treatments at various times after monolayer wounding. (B) Quantification of cell migration assays. The means shown were obtained from 10 measurements of each time point and condition. The experiment was performed two times in triplicate. (TIFF 10159 kb)

High resolution image (GIF 264 kb)

Fig. S2

Evaluation of E-NTPDases and CD73 expression and activity in EPC2, KYSE30, and OE21 esophageal cancer cell line. (A) RT-qPCR analysis of NTPD1, NTPD2, and CD73 relative expression was performed and the values were showed as ΔCq relative expression in relation to GAPDH in EPC2, KYSE30, and OE21 cancer cell lines. The significance was described as **p < 0.01 and ***p < 0.001 and indicate difference in relation to EPC2 cell line and #p < 0.05 and ###p < 0.001 indicating difference of KYSE30. (B) Evaluation of enzymatic activity as described in “Material and Methods” section. *P < 0.05 and indicate difference in relation to ADP hydrolysis. (TIFF 7227 kb)

High resolution image (GIF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.A., Cappellari, A.R., de Marchi, F.O. et al. Potential role of P2X7R in esophageal squamous cell carcinoma proliferation. Purinergic Signalling 13, 279–292 (2017). https://doi.org/10.1007/s11302-017-9559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9559-2

Keywords

Navigation