Skip to main content
Log in

Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Although adenosine A1 receptors (A1R) have been associated to ischemic preconditioning (IPC), direct evidence for their ability to preserve mitochondrial function upon hepatic preconditioning is still missing and could represent a novel strategy to boost the quality of liver transplants. We tested if the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prevented IPC in the liver and if the A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) might afford a pharmacological preconditioning. Livers underwent a 120 min of 70% warm ischemia and 16 h of reperfusion (I/R), and the IPC group underwent a 5-min ischemic episode followed by a 10-min period of reperfusion before I/R. DPCPX or CCPA was administered intraperitoneally 2 h before IPC or I/R. The control of mitochondrial function emerged as the central element affected by IPC and controlled by endogenous A1R activation. Thus, livers from IPC- or CCPA-treated rats displayed an improved oxidative phosphorylation with higher state 3 respiratory rate, higher respiratory control ratio, increased ATP content, and decreased lag phase. IPC and CCPA also prevented the I/R-induced susceptibility to calcium-induced mitochondrial permeability transition, the rate of reactive oxygen species (ROS) generation, and the decreased mitochondrial content of phospho-Ser9 GSK-3β. DPCPX abrogated these effects of IPC. These implicate the control of GSK-3β activity by Akt-mediated Ser9-GSK-3β phosphorylation preserving the efficiency of oxidative phosphorylation and ROS-mediated cell death in the ability of A1R activation to mimic IPC in the liver. In conclusion, the parallel between IPC and A1R-mediated preconditioning also paves the way to consider a putative therapeutic use of the later in liver transplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A1R:

Adenosine A1 receptor

ALT:

Alanine aminotransferase

ANT:

Adenine nucleotide translocator

AST:

Aspartate aminotransferase

CypD:

Cyclophilin D

CCPA:

2-Chloro-N6-cyclopentyladenosine

H2DCF-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

FCCP:

Carbonylcyanide-p-trifluoromethoxyphenylhydrazon

GSK-3β:

Glycogen synthase kinase-3β

IPC:

Ischemic preconditioning

I/R:

Ischemia/reperfusion

LDH:

Lactate dehydrogenase

ΔΨ:

Mitochondrial membrane potential

MPT:

Mitochondrial permeability transition

OXPHOS:

Oxidative phosphorylation

PC:

Preconditioning

RCR:

Respiratory control ratio

RFUs:

Relative fluorescence units

ROS:

Reactive oxygen species

TPP+ :

Tetraphenylphosphonium

VDAC:

Voltage-dependent anion channel

References

  1. Alexandrino H, Varela AT, Teodoro JS, Martins MA, Rolo AP, Tralhão JG, Palmeira CM, Castro E, Sousa F (2026) Mitochondrial bioenergetics and posthepatectomy liver dysfunction. Eur J Clin Investig 46:627–635. doi:10.1111/eci.12639

    Article  Google Scholar 

  2. Pantazi E, Bejaoui M, Folch-Puy E, Adam R, Roselló-Catafau J (2016) Advances in treatment strategies for ischemia reperfusion injury. Expert Opin Pharmacother 17:169–179. doi:10.1517/14656566.2016.1115015

    Article  CAS  PubMed  Google Scholar 

  3. Varela AT, Rolo AP, Palmeira CM (2011) Fatty liver and ischemia/reperfusion: are there drugs able to mitigate injury? Curr Med Chem 18:4987–5002. doi:10.2174/092986711797535164

    Article  CAS  PubMed  Google Scholar 

  4. Koti RS, Seifalian AM, Davidson BR (2003) Protection of the liver by ischemic preconditioning: a review of mechanisms and clinical applications. Dig Surg 20:383–396. doi:10.1159/000072064

    Article  PubMed  Google Scholar 

  5. Yoshizumi T, Yanaga K, Soejima Y, Maeda T, Uchiyama H, Sugimachi K (1998) Amelioration of liver injury by ischaemic preconditioning. Br J Surg 85:1636–1640. doi:10.1046/j.1365-2168.1998.00917.x

    Article  CAS  PubMed  Google Scholar 

  6. Yin DP, Sankary HN, Chong AS, Ma LL, Shen J, Foster P, Williams JW (1998) Protective effect of ischemic preconditioning on liver preservation-reperfusion injury in rats. Transplantation 66:152–157

    Article  CAS  PubMed  Google Scholar 

  7. Clavien PA, Yadav S, Sindram D, Bentley RC (2000) Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans. Ann Surg 232:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dünschede F, Erbes K, Kircher A, Westermann S, Seifert J, Schad A, Oliver K, Kiemer AK, Theodor J (2006) Reduction of ischemia reperfusion injury after liver resection and hepatic inflow occlusion by alpha-lipoic acid in humans. World J Gastroenterol 12:6812–6817. doi:10.3748/wjg.v12.i42.6812

    Article  PubMed  PubMed Central  Google Scholar 

  9. Selzner N, Boehnert M, Selzner M (2012) Preconditioning, postconditioning, and remote conditioning in solid organ transplantation: basic mechanisms and translational applications. Transplant Rev 26:115–124. doi:10.1016/j.trre.2011.07.003

    Article  Google Scholar 

  10. Suzuki S, Inaba K, Konno H (2008) Ischemic preconditioning in hepatic ischemia and reperfusion. Curr Opin Organ Transplant 13:142–147. doi:10.1097/MOT.0b013e3282f6a164

    Article  PubMed  Google Scholar 

  11. Peralta C, Hotter G, Closa D, Prats N, Xaus C, Gelpí E, Roselló-Catafau J (1999) The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is mediated by activation of adenosine A2 receptors. Hepatology 29:126–132. doi:10.1002/hep.510290104

    Article  CAS  PubMed  Google Scholar 

  12. Kim J, Kim M, Song JH, Lee HT (2008) Endogenous A1 adenosine receptors protect against hepatic ischemia reperfusion injury in mice. Liver Transpl 14:845–854. doi:10.1002/lt.21432

    Article  PubMed  Google Scholar 

  13. Park SW1, Chen SW, Kim M, Brown KM, D’Agati VD, Lee HT (2010) Protection against acute kidney injury via A1 adenosine receptor-mediated Akt activation reduces liver injury after liver ischemia and reperfusion in mice. J Pharmacol Exp Ther 333:736–747. doi:10.1124/jpet.110.166884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alchera E, Imarisio C, Mandili G, Merlin S, Chandrashekar BR, Novelli F, Follenzi A, Carini R (2015) Pharmacological preconditioning by adenosine A2a receptor stimulation: features of the protected liver cell phenotype. Biomed Res Int 2015:286746. doi:10.1155/2015/286746

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carini R, Grazia De Cesaris M, Splendore R, Domenicotti C, Nitti MP, Pronzato MA, Albano E (2003) Signal pathway responsible for hepatocyte preconditioning by nitric oxide. Free Radic Biol Med 34:1047–1055. doi:10.1016/S0891-5849(03)00039-X

    Article  CAS  PubMed  Google Scholar 

  16. Yun N, Lee S-M (2013) Activation of protein kinase Cδ reduces hepatocellular damage in ischemic preconditioned rat liver. J Surg Res 185:869–876. doi:10.1016/j.jss.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Rehman H, Connor HD, Ramshesh VK, Theruvath TP, Mason RP, Wright GL, Lemasters JJ, Zhong Z (2008) Ischemic preconditioning prevents free radical production and mitochondrial depolarization in small-for-size rat liver grafts. Transplantation 85:1322–1331. doi:10.1097/TP.0b013e31816de302

    Article  PubMed  Google Scholar 

  18. Andraus W, Souza GF, Oliveira MG, Haddad LB, Coelho AM, Galvão FH, Leitão RM, D’Albuquerque LA, Machado MC (2010) S-nitroso-N-acetylcysteine ameliorates ischemia-reperfusion injury in the steatotic liver. Clinics (Sao Paulo) 65:715–721. doi:10.1590/S1807-59322010000700011

    Article  Google Scholar 

  19. Lanir A, Jenkins RL, Caldwell C, Lee RG, Khettry U, Clouse ME (1988) Hepatic transplantation survival: correlation with adenine nucleotide level in donor liver. Hepatology 8:471–475. doi:10.1002/hep.1840080306

    Article  CAS  PubMed  Google Scholar 

  20. Marni A, Ferrero ME, Gaja G (1988) Metabolic function of grafted liver in rats. Transplantation 46:830–835

    Article  CAS  PubMed  Google Scholar 

  21. Di Lisa F, Canton M, Menabò R, Dodoni G, Bernardi P (2003) Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol 98:235–241

    CAS  PubMed  Google Scholar 

  22. Di Lisa F, Carpi A, Giorgio V, Bernardi P (2011) The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochim Biophys Acta 1813:1316–1322. doi:10.1016/j.bbamcr.2011.01.031

    Article  CAS  PubMed  Google Scholar 

  23. Varela AT1, Simões AM, Teodoro JS, Duarte FV, Gomes AP, Palmeira CM, Rolo AP (2010) Indirubin-3′-oxime prevents hepatic I/R damage by inhibiting GSK-3beta and mitochondrial permeability transition. Mitochondrion 10:456–463. doi:10.1016/j.mito.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  24. Smith RA, Hartley RC, Cochemé HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352. doi:10.1016/j.tips.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  25. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125. doi:10.1016/S0197-0186(00)00034-6

    Article  CAS  PubMed  Google Scholar 

  26. Almeida CG, de Mendonça A, Cunha RA, Ribeiro JA (2003) Adenosine promotes neuronal recovery from reactive oxygen species induced lesion in rat hippocampal slices. Neurosci Lett 339:127–130. doi:10.1016/S0304-3940(02)01478-7

    Article  CAS  PubMed  Google Scholar 

  27. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    Article  CAS  PubMed  Google Scholar 

  28. Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85:659–665

    Article  CAS  PubMed  Google Scholar 

  29. Tsuchida A, Liu GS, Wilborn WH, Downey JM (1993) Pretreatment with the adenosine A1 selective agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), causes a sustained limitation of infarct size in rabbits. Cardiovasc Res 27:652–566

    Article  CAS  PubMed  Google Scholar 

  30. Nagy LE, DeSilva SE (1994) Adenosine A1 receptors mediate chronic ethanol-induced increases in receptor-stimulated cyclic AMP in cultured hepatocytes. Biochem J 304:205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A 92:4666–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang BT (1996) Direct preconditioning of cardiac ventricular myocytes via adenosine A1 receptor and KATP channel. Am J Phys 271:H1769–H1777

    CAS  Google Scholar 

  33. Boeck CR, Kroth EH, Bronzatto MJ, Vendite D (2005) Adenosine receptors co-operate with NMDA preconditioning to protect cerebellar granule cells against glutamate neurotoxicity. Neuropharmacology 49:17–24

    Article  CAS  PubMed  Google Scholar 

  34. Ilie A, Ciocan D, Constantinescu AO et al (2009) Endogenous activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression. Neuroscience 159:1070–1078. doi:10.1016/j.neuroscience.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  35. Minelli A, Grottelli S, Corazzi L et al (2010) Adenosine A1 receptors contribute to mitochondria vulnerability to pro-oxidant stressors. Mitochondrion 10:369–379. doi:10.1016/j.mito.2010.03.004

    Article  PubMed  Google Scholar 

  36. Xiang F, Huang Y-S, Zhang D-X et al (2010) Adenosine A1 receptor activation reduces opening of mitochondrial permeability transition pores in hypoxic cardiomyocytes. Clin Exp Pharmacol Physiol 37:343–349. doi:10.1111/j.1440-1681.2009.05300.x

    Article  CAS  PubMed  Google Scholar 

  37. Zhan E, McIntosh VJ, Lasley RD (2011) Adenosine A2A and A2B receptors are both required for adenosine A1 receptor-mediated cardioprotection. Am J Phys 301:H1183–H1189. doi:10.1152/ajpheart.00264.2011

    CAS  Google Scholar 

  38. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. doi:10.1152/physrev.00024.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435. doi:10.1046/j.1471-4159.2003.02113.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549. doi:10.1172/JCI19906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park S-S, Zhao H, Mueller RA, Xu Z (2006) Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3β. J Mol Cell Cardiol 40:708–716. doi:10.1016/j.yjmcc.2006.01.024

    Article  CAS  PubMed  Google Scholar 

  42. Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, Ohori K, Hotta H, Terashima Y, Shimamoto K (2007) Modulation of the mitochondrial permeability transition pore complex in GSK-3β-mediated myocardial protection. J Mol Cell Cardiol 2007 43:564–570. doi:10.1016/j.yjmcc.2007.08.010

    CAS  Google Scholar 

  43. Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z (2009) Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3β and mitochondrial permeability transition pore. Eur J Pharmacol 604:111–116. doi:10.1016/j.ejphar.2008.12.024

    Article  CAS  PubMed  Google Scholar 

  44. Miura T, Tanno M (2010) Mitochondria and GSK-3β in cardioprotection against ischemia/reperfusion injury. Cardiovasc Drugs Ther 24:255–263. doi:10.1007/s10557-010-6234-z

    Article  CAS  PubMed  Google Scholar 

  45. Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN (2010) GSK3β: role in therapeutic landscape and development of modulators. Br J Pharmacol 160:1–19. doi:10.1111/j.1476-5381.2010.00661.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. doi:10.1016/j.pharmthera.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  47. Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, Murase H, Tobisawa T, Ogasawara M, Horio Y, Miura T (2014) Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J Biol Chem 289:29285–29296. doi:10.1074/jbc.M114.563924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koeppen M, Eckle T, Eltzschig HK (2009) Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS One 4:e6784. doi:10.1371/journal.pone.0006784

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carini R (2003) Albano E (2003) recent insights on the mechanisms of liver preconditioning. Gastroenterology 125:1480–1491. doi:10.1016/j.gastro.2003.05.005

    Article  PubMed  Google Scholar 

  50. Taimor G (2003) Mitochondria as common endpoints in early and late preconditioning. Cardiovasc Res 59:266–267. doi:10.1016/S0008-6363(03)00465-6

    Article  CAS  PubMed  Google Scholar 

  51. Palmeira CM, Moreno AJ, Madeira VM (1994) Interactions of herbicides 2,4-D and dinoseb with liver mitochondrial bioenergetics. Toxicol Appl Pharmacol 127:50–57. doi:10.1006/taap.1994.1138

    Article  CAS  PubMed  Google Scholar 

  52. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  53. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Meth Enzymol 10:41–47

    Article  CAS  Google Scholar 

  54. Chance B, Williams GR (1956) Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 221:477–489

    CAS  PubMed  Google Scholar 

  55. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  PubMed  Google Scholar 

  56. Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525. doi:10.2174/0929867033457278

    Article  CAS  PubMed  Google Scholar 

  57. Duarte FV, Gomes AP, Teodoro JS, Varela AT, Moreno AJ, Rolo AP, Palmeira CM (2013) Dibenzofuran-induced mitochondrial dysfunction: interaction with ANT carrier. Toxicol in Vitro 27:2160–2168. doi:10.1016/j.tiv.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  58. Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121:151–157. doi:10.1016/S0378-4274(01)00329-0

    Article  CAS  PubMed  Google Scholar 

  59. Palmeira CM, Wallace KB (1997) Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones. Toxicol Appl Pharmacol 143:338–347. doi:10.1006/taap.1996.8099

    Article  CAS  PubMed  Google Scholar 

  60. Rajdev S, Reynolds IJ (1993) Calcium green-5 N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neurosci Lett 162:149–152

    Article  CAS  PubMed  Google Scholar 

  61. Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE (2015) Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 11:389–407. doi:10.1007/s11302-015-9460-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pugliese AM, Latini S, Corradetti R, Pedata F (2003) Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 140:305–314. doi:10.1038/sj.bjp.0705442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Das S, Cordis GA, Maulik N, Das DK (2005) Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Phys 288:H328–H335. doi:10.1152/ajpheart.00453.2004

    CAS  Google Scholar 

  64. Jonzon B, Bergquist A, Li YO, Fredholm BB (1986) Effects of adenosine and two stable adenosine analogues on blood pressure, heart rate and colonic temperature in the rat. Acta Physiol Scand 126:491–498

    Article  CAS  PubMed  Google Scholar 

  65. Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3:159–167. doi:10.1016/S1097-2765(00)80307-X

    Article  CAS  PubMed  Google Scholar 

  66. Hansson MJ, Morota S, Chen L, Matsuyama N, Suzuki Y, Nakajima S, Tanoue T, Omi A, Shibasaki F, Shimazu M, Ikeda Y, Uchino H, Elmér E (2011) Cyclophilin D-sensitive mitochondrial permeability transition in adult human brain and liver mitochondria. J Neurotrauma 28:143–153. doi:10.1089/neu.2010.1613

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela P. Rolo.

Ethics declarations

All animals received care according to institutional guidelines, and all procedures were according to EU guidelines (2010/63) after approval by the Animal Care Committee of the University of Coimbra.

Grants and financial support

This study is funded by FEDER through COMPETE 2020 and Fundação para a Ciência e a Tecnologia (UID/NEU/04,539/2013). FVD and JST are recipients of a Portuguese Foundation for Science and Technology post-doctoral scholarship (SFRH/BPD/94,898/2013 and SFRH/BPD/94,036/2013, respectively).

Conflict of interest

Filipe V. Duarte declares that he has no conflict of interest.

João A. Amorim declares that he has no conflict of interest.

Ana T. Varela declares that she has no conflict of interest.

João S. Teodoro declares that he has no conflict of interest.

Ana P. Gomes declares that she has no conflict of interest.

Rodrigo A. Cunha declares that he has no conflict of interest.

Carlos M. Palmeira declares that he has no conflict of interest.

Anabela P. Rolo declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, F.V., Amorim, J.A., Varela, A.T. et al. Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. Purinergic Signalling 13, 179–190 (2017). https://doi.org/10.1007/s11302-016-9548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9548-x

Keywords

Navigation