Skip to main content
Log in

Lung injury during LPS-induced inflammation occurs independently of the receptor P2Y1

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Disruption of the lung endothelial and epithelial barriers during acute inflammation leads to excessive neutrophil migration. It is likely that activated platelets promote pulmonary recruitment of neutrophils during inflammation, and previous studies have found that anti-platelet therapy and depletion of circulating platelets have lung-protective effects in different models of inflammation. Because ADP signaling is important for platelet activation, I investigated the role of the ADP-receptor P2Y1, a G protein-coupled receptor expressed on the surface of circulating platelets, during lipopolysaccharide (LPS)-induced inflammation and lung injury in P2Y1-null and wild-type mice. Systemic inflammation was induced by a single intraperitoneal dose of LPS (3 mg/kg), and the mice were analyzed 24 h posttreatment. The data show that the LPS-induced inflammation levels were comparable in the P2Y1-null and wild-type mice. Specifically, splenomegaly, counts of circulating platelets and white blood cells (lymphocytes and neutrophils), and assessments of lung injury (tissue architecture and cell infiltration) were similar in the P2Y1-null and wild-type mice. Based on my results, I conclude that lung injury during LPS-induced inflammation in mice is independent of P2Y1 signaling. I propose that if a blockade of purinergic signaling in platelets is a potential lung-protective strategy in the treatment of acute inflammation, then it is more likely to be a result of the disruption of the signaling pathway mediated by P2Y12, another G protein-coupled receptor that mediates platelet responses to ADP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23(4):243–252. doi:10.1089/jamp.2009.0775

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asaduzzaman M, Lavasani S, Rahman M, Zhang S, Braun OO, Jeppsson B, Thorlacius H (2009) Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med 37(4):1389–1396. doi:10.1097/CCM.0b013e31819ceb71

    Article  PubMed  Google Scholar 

  3. Hagiwara S, Iwasaka H, Hasegawa A, Oyama M, Imatomi R, Uchida T, Noguchi T (2011) Adenosine diphosphate receptor antagonist clopidogrel sulfate attenuates LPS-induced systemic inflammation in a rat model. Shock 35(3):289–292

    Article  CAS  PubMed  Google Scholar 

  4. Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274. doi:10.1038/nri2956

    Article  CAS  PubMed  Google Scholar 

  5. Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67(4):499–511

    Article  CAS  PubMed  Google Scholar 

  6. Kunapuli SP, Ding Z, Dorsam RT, Kim S, Murugappan S, Quinton TM (2003) ADP receptors—targets for developing antithrombotic agents. Curr Pharm Des 9(28):2303–2316

    Article  CAS  PubMed  Google Scholar 

  7. Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci U S A 95(14):8070–8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273(4):2030–2034

    Article  CAS  PubMed  Google Scholar 

  9. Jin J, Dasari VR, Sistare FD, Kunapuli SP (1998) Distribution of P2Y receptor subtypes on haematopoietic cells. Br J Pharmacol 123(5):789–794. doi:10.1038/sj.bjp.0701665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zerr M, Hechler B, Freund M, Magnenat S, Lanois I, Cazenave JP, Leon C, Gachet C (2011) Major contribution of the P2Y1 receptor in purinergic regulation of TNFalpha-induced vascular inflammation. Circulation 123(21):2404–2413

    Article  CAS  PubMed  Google Scholar 

  11. Barragan-Iglesias P, Mendoza-Garces L, Pineda-Farias JB, Solano-Olivares V, Rodriguez-Silverio J, Flores-Murrieta FJ, Granados-Soto V, Rocha-Gonzalez HI (2015) Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol Biochem Behav 128:23–32. doi:10.1016/j.pbb.2014.11.001

  12. Malin SA, Molliver DC (2010) Gi- and Gq-coupled ADP (P2Y) receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior. Mol Pain 6:21. doi:10.1186/1744–8069–6-21

  13. Liverani E, Rico MC, Tsygankov AY, Kilpatrick LE, Kunapuli SP (2016) P2Y12 receptor modulates sepsis-induced inflammation. Arterioscler Thromb Vasc Biol 36(5):961–971. doi:10.1161/ATVBAHA.116.307401

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Ostberg O, Wihlborg AK, Brogren H, Jern S, Erlinge D (2003) Quantification of ADP and ATP receptor expression in human platelets. J Thromb Haemost 1(2):330–336

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44(3):242–250

    Article  PubMed  Google Scholar 

  16. Ben Addi A, Cammarata D, Conley PB, Boeynaems JM, Robaye B (2010) Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J Immunol 185(10):5900–5906

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Jacobsen SE, Bengtsson A, Erlinge D (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Gao XM, Fang L, Jennings NL, Su YQX, Samson AL, Kiriazis H, Wang XF, Shan L, Sturgeon SA, Medcalf RL, Jackson SP, Dart AM, Du XJ (2011) Novel role of platelets in mediating inflammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler Thromb Vasc Biol 31(4):834–841. doi:10.1161/ATVBAHA.110.220467

    Article  CAS  PubMed  Google Scholar 

  19. Abdulla A, Awla D, Hartman H, Rahman M, Jeppsson B, Regner S, Thorlacius H (2011) Role of platelets in experimental acute pancreatitis. Br J Surg 98(1):93–103. doi:10.1002/bjs.7271

    Article  CAS  PubMed  Google Scholar 

  20. Winning J, Claus RA, Pletz MW, Bauer M, Losche W (2011) Adenosine diphosphate receptor antagonist clopidogrel sulfate attenuates LPS-induced systemic inflammation in a rat model. Shock 36(3):317 author reply 317-318

    Article  PubMed  Google Scholar 

  21. Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5(10):1199–1202

    Article  CAS  PubMed  Google Scholar 

  22. Leon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 104(12):1731–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liverani E, Rico MC, Yaratha L, Tsygankov AY, Kilpatrick LE, Kunapuli SP (2013) LPS-induced systemic inflammation is more severe in P2Y12 null mice. J Leukoc Biol 95(2):313–323. doi:10.1189/jlb.1012518

    Article  PubMed  Google Scholar 

  24. Kang S, Lee SP, Kim KE, Kim HZ, Memet S, Koh GY (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113(11):2605–2613

    Article  CAS  PubMed  Google Scholar 

  25. Nagano I, Takao T, Nanamiya W, Takemura T, Nishiyama M, Asaba K, Makino S, De Souza EB, Hashimoto K (1999) Differential effects of one and repeated endotoxin treatment on pituitary-adrenocortical hormones in the mouse: role of interleukin-1 and tumor necrosis factor-alpha. Neuroimmunomodulation 6(4):284–292

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Wang W, Wang H, Li Y, Shi M, Li H, Yan J (2016) Rapamycin attenuates splenomegaly in both intrahepatic and prehepatic portal hypertensive rats by blocking mTOR signaling pathway. PLoS One 11(1):e0141159. doi:10.1371/journal.pone.0141159

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kostyak JC, Bhavanasi D, Liverani E, McKenzie SE, Kunapuli SP (2014) Protein kinase C delta deficiency enhances megakaryopoiesis and recovery from thrombocytopenia. Arterioscler Thromb Vasc Biol 34(12):2579–2585. doi:10.1161/ATVBAHA.114.304492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tolosano E, Fagoonee S, Hirsch E, Berger FG, Baumann H, Silengo L, Altruda F (2002) Enhanced splenomegaly and severe liver inflammation in haptoglobin/hemopexin double-null mice after acute hemolysis. Blood 100(12):4201–4208. doi:10.1182/blood-2002-04-1270

    Article  CAS  PubMed  Google Scholar 

  29. Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, Millman A, Van Rooijen N, Urban JF Jr, Wynn TA, Gause WC (2012) An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat Med 18(2):260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uehara K, Uehara A (2011) P2Y1, P2Y6, and P2Y12 receptors in rat splenic sinus endothelial cells: an immunohistochemical and ultrastructural study. Histochem Cell Biol 136(5):557–567. doi:10.1007/s00418-011-0859-2

    Article  CAS  PubMed  Google Scholar 

  31. Communi D, Paindavoine P, Place GA, Parmentier M, Boeynaems JM (1999) Expression of P2Y receptors in cell lines derived from the human lung. Br J Pharmacol 127(2):562–568. doi:10.1038/sj.bjp.0702560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Litosch I (2002) Novel mechanisms for feedback regulation of phospholipase C-beta activity. IUBMB Life 54(5):253–260. doi:10.1080/15216540215673

    Article  CAS  PubMed  Google Scholar 

  33. Wu D (2005) Signaling mechanisms for regulation of chemotaxis. Cell Res 15(1):52–56. doi:10.1038/sj.cr.7290265

    Article  CAS  PubMed  Google Scholar 

  34. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815. doi:10.1038/nri2171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Satya P. Kunapuli for providing the P2Y1-null mice. This work was supported by the American Heart Association Grant 16SDG26980003 (to E.L.).

Authorship

E.L. designed and conducted the experiments described, carried out the data analysis and statistical tests presented, interpreted the results, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Liverani.

Ethics declarations

All procedures for the care and handling of the animals adhered to the National Institutes of Health standards and were approved by the Institutional Animal Care and Use Committee at Temple University School of Medicine (Philadelphia, PA).

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liverani, E. Lung injury during LPS-induced inflammation occurs independently of the receptor P2Y1 . Purinergic Signalling 13, 119–125 (2017). https://doi.org/10.1007/s11302-016-9543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9543-2

Keywords

Navigation