Skip to main content
Log in

Coupling switch of P2Y-IP3 receptors mediates differential Ca2+ signaling in human embryonic stem cells and derived cardiovascular progenitor cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signaling mediated by P2 receptors (P2Rs) plays important roles in embryonic and stem cell development. However, how it mediates Ca2+ signals in human embryonic stem cells (hESCs) and derived cardiovascular progenitor cells (CVPCs) remains unclear. Here, we aimed to determine the role of P2Rs in mediating Ca2+ mobilizations of these cells. hESCs were induced to differentiate into CVPCs by our recently established methods. Gene expression of P2Rs and inositol 1,4,5-trisphosphate receptors (IP3Rs) was analyzed by quantitative/RT-PCR. IP3R3 knockdown (KD) or IP3R2 knockout (KO) hESCs were established by shRNA- or TALEN-mediated gene manipulations, respectively. Confocal imaging revealed that Ca2+ responses in CVPCs to ATP and UTP were more sensitive and stronger than those in hESCs. Consistently, the gene expression levels of most P2YRs except P2Y1 were increased in CVPCs. Suramin or PPADS blocked ATP-induced Ca2+ transients in hESCs but only partially inhibited those in CVPCs. Moreover, the P2Y1 receptor-specific antagonist MRS2279 abolished most ATP-induced Ca2+ signals in hESCs but not in CVPCs. P2Y1 receptor-specific agonist MRS2365 induced Ca2+ transients only in hESCs but not in CVPCs. Furthermore, IP3R2KO but not IP3R3KD decreased the proportion of hESCs responding to MRS2365. In contrast, both IP3R2 and IP3R3 contributed to UTP-induced Ca2+ responses while ATP-induced Ca2+ responses were more dependent on IP3R2 in the CVPCs. In conclusion, a predominant role of P2Y1 receptors in hESCs and a transition of P2Y-IP3R coupling in derived CVPCs are responsible for the differential Ca2+ mobilization between these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528

    Article  CAS  PubMed  Google Scholar 

  2. Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR et al (2015) Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 33(9):970–979

    Article  CAS  PubMed  Google Scholar 

  3. Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S et al (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460(7251):113–117

    Article  CAS  PubMed  Google Scholar 

  4. Cao N, Liang H, Huang J, Wang J, Chen Y et al (2013) Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res 23(9):1119–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Birket MJ, Mummery CL (2015) Pluripotent stem cell derived cardiovascular progenitors—a developmental perspective. Dev Biol 400(2):169–179

    Article  CAS  PubMed  Google Scholar 

  6. Pouton CW, Haynes JM (2007) Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 6(8):605–616

    Article  CAS  PubMed  Google Scholar 

  7. Barbaric I, Gokhale PJ, Andrews PW (2010) High-content screening of small compounds on human embryonic stem cells. Biochem Soc Trans 38(4):1046–1050

    Article  CAS  PubMed  Google Scholar 

  8. Jung EM, Choi YU, Kang HS, Yang H, Hong EJ et al (2015) Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol 35(2):205–218

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Y, Wang D, Zhang G, Wang G, Tong J et al (2015) Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene. Environ Toxicol. doi:10.1002/tox.22142

    Google Scholar 

  10. Blin G, Nury D, Stefanovic S, Neri T, Guillevic O et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120(4):1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329

    Article  CAS  PubMed  Google Scholar 

  12. Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336(Pt 3):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burnstock G, Pelleg A (2015) Cardiac purinergic signalling in health and disease. Purinergic Signalling 11(1):1–46

    Article  CAS  PubMed  Google Scholar 

  14. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signalling 4(1):1–20

    Article  CAS  PubMed  Google Scholar 

  15. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99(1):16–34

    Article  CAS  PubMed  Google Scholar 

  16. Burnstock G, Ulrich H (2011) Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 68(8):1369–1394

    Article  CAS  PubMed  Google Scholar 

  17. Li LF, Xiang C, Qin KR (2015) Modeling of TRPV4-C1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP. Biomech Model Mechanobiol 14(5):979–993

    Article  PubMed  Google Scholar 

  18. Nejime N, Tanaka N, Yoshihara R, Kagota S, Yoshikawa N et al (2008) Effect of P2 receptor on the intracellular calcium increase by cancer cells in human umbilical vein endothelial cells. Naunyn Schmiedeberg’s Arch Pharmacol 377(4-6):429–436

    Article  CAS  Google Scholar 

  19. Govindan S, Taylor CW (2012) P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells. Purinergic Signalling 8(4):763–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumari R, Goh G, Ng LL, Boarder MR (2003) ATP and UTP responses of cultured rat aortic smooth muscle cells revisited: dominance of P2Y2 receptors. Br J Pharmacol 140(7):1169–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dolmatova E, Spagnol G, Boassa D, Baum JR, Keith K et al (2012) Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 303(10):H1208–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cosentino S, Banfi C, Burbiel JC, Luo H, Tremoli E et al (2012) Cardiomyocyte death induced by ischaemic/hypoxic stress is differentially affected by distinct purinergic P2 receptors. J Cell Mol Med 16(5):1074–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mazrouei S, Sharifpanah F, Bekhite MM, Figulla HR, Sauer H et al (2015) Cardiomyogenesis of embryonic stem cells upon purinergic receptor activation by ADP and ATP. Purinergic Signalling. 11(4):491-506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heo JS, Han HJ (2006) ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 24(12):2637–2648

    Article  CAS  PubMed  Google Scholar 

  25. Ferreira-Martins J, Rondon-Clavo C, Tugal D, Korn JA, Rizzi R et al (2009) Spontaneous calcium oscillations regulate human cardiac progenitor cell growth. Circ Res 105(8):764–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ermakov A, Pells S, Freile P, Ganeva VV, Wildenhain J et al (2012) A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture. Stem Cell Res 9(3):171–184

    Article  CAS  PubMed  Google Scholar 

  27. Apati A, Paszty K, Hegedus L, Kolacsek O, Orban TI et al (2013) Characterization of calcium signals in human embryonic stem cells and in their differentiated offspring by a stably integrated calcium indicator protein. Cell Signal 25(4):752–759

    Article  CAS  PubMed  Google Scholar 

  28. von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110(3):415–432

    Article  Google Scholar 

  29. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102(5):1426–1446

    Article  CAS  PubMed  Google Scholar 

  30. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakazawa M, Uchida K, Aramaki M, Kodo K, Yamagishi C et al (2011) Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field. J Mol Cell Cardiol 51(1):58–66

    Article  CAS  PubMed  Google Scholar 

  32. Woodcock EA, Matkovich SJ (2005) Ins(1,4,5)P3 receptors and inositol phosphates in the heart-evolutionary artefacts or active signal transducers? Pharmacol Ther 107(2):240–251

    Article  CAS  PubMed  Google Scholar 

  33. Yoo SH (2012) Chromogranins and inositol 1,4,5-trisphosphate-dependent Ca(2+)-signaling in cardiomyopathy and heart failure. Curr Med Chem 19(24):4068–4073

    Article  CAS  PubMed  Google Scholar 

  34. Cao N, Liang H, Yang HT (2015) Generation, expansion, and differentiation of cardiovascular progenitor cells from human pluripotent stem cells. Methods Mol Biol 1212:113–125

    Article  PubMed  Google Scholar 

  35. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93(1):32–39

    Article  CAS  PubMed  Google Scholar 

  36. Li K, Zhang W, Liu J, Wang W, Xie W et al (2009) Flash Sniper: automated detection and analysis of mitochondrial superoxide flash. Biophys J 96(3):531a–532a

    Article  Google Scholar 

  37. Hattori M, Suzuki AZ, Higo T, Miyauchi H, Michikawa T et al (2004) Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca2+ signaling. J Biol Chem 279(12):11967–11975

    Article  CAS  PubMed  Google Scholar 

  38. Ouyang K, Leandro Gomez-Amaro R, Stachura DL, Tang H, Peng X et al (2014) Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nat Commun 5:4814

    Article  CAS  PubMed  Google Scholar 

  39. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang S, Fritz N, Ibarra C, Uhlen P (2011) Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 36(7):1175–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447(2-3):247–260

    Article  CAS  PubMed  Google Scholar 

  42. von Kugelgen I, Wetter A (2000) Molecular pharmacology of P2Y-receptors. Naunyn Schmiedeberg’s Arch Pharmacol 362(4-5):310–323

    Article  Google Scholar 

  43. Yanagida E, Shoji S, Hirayama Y, Yoshikawa F, Otsu K et al (2004) Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells. Cell Calcium 36(2):135–146

    Article  CAS  PubMed  Google Scholar 

  44. Gur S, Hellstrom WJ (2009) Activation of P2Y1 and P2Y2 nucleotide receptors by adenosine 5′-triphosphate analogues augmented nerve-mediated relaxation of human corpus cavernosum. Can Urol Assoc J 3(4):314–318

    PubMed  PubMed Central  Google Scholar 

  45. Shen JB, Yang R, Pappano A, Liang BT (2014) Cardiac P2X purinergic receptors as a new pathway for increasing Na(+) entry in cardiac myocytes. Am J Physiol Heart Circ Physiol 307(10):H1469–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Govindan S, Taylor EJ, Taylor CW (2010) Ca(2+) signalling by P2Y receptors in cultured rat aortic smooth muscle cells. Br J Pharmacol 160(8):1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hough SR, Laslett AL, Grimmond SB, Kolle G, Pera MF (2009) A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS One 4(11):e7708

    Article  PubMed  PubMed Central  Google Scholar 

  48. Khaira SK, Pouton CW, Haynes JM (2009) P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca2+ in mouse embryonic stem cell-derived GABAergic neurons. Br J Pharmacol 158(8):1922–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mironneau J, Coussin F, Morel JL, Barbot C, Jeyakumar LH et al (2001) Calcium signalling through nucleotide receptor P2X1 in rat portal vein myocytes. J Physiol 536(Pt 2):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skerjanc IS (1999) Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med 9(5):139–143

    Article  CAS  PubMed  Google Scholar 

  51. Resende RR, Britto LR, Ulrich H (2008) Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. Int J Dev Neurosci 26(7):763–777

    Article  CAS  PubMed  Google Scholar 

  52. Communi D, Robaye B, Boeynaems JM (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128(6):1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bansaghi S, Golenar T, Madesh M, Csordas G, RamachandraRao S et al (2014) Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. J Biol Chem 289(12):8170–8181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science of China Grants (Nos. 31030050 and 81520108004 to HTY, No. 31401167 to MZ); the Strategic Priority Research Program of CAS (No. XDA01020204 to HTY); the National Basic Research Program of China (No. 2014CB965100 to HTY); the National Science and Technology Major Project (No. 2012ZX09501001 to HTY); and the Major Program of Development Fund for Shanghai Zhangjiang National Innovation Demonstration Zone (No. ZJ2014-ZD-002 to HTY). We thank WiCell Research Institute for providing the H7 and H9 hESCs, and Dr. Heping Cheng (Peking University, Beijing, China) for providing the Flash Sniper software and for constructive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang-Tian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Jijun Huang and Min Zhang are joint first co-authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhang, M., Zhang, P. et al. Coupling switch of P2Y-IP3 receptors mediates differential Ca2+ signaling in human embryonic stem cells and derived cardiovascular progenitor cells. Purinergic Signalling 12, 465–478 (2016). https://doi.org/10.1007/s11302-016-9512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9512-9

Keywords

Navigation