Skip to main content

Advertisement

Log in

Guanosine and its role in neuropathologies

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

ARS:

Acute restraint stress

ATP:

Adenosine 5′-triphosphate

Aβ:

Amyloid β-peptide

CNS:

Central nervous system

cAMP:

Cyclic adenosine monophosphate

CREB:

cAMP response element binding protein

FGF-2:

Fibroblast growth factor 2

FST:

Forced swimming test

GBP:

Guanine-based purine

GDP:

Guanosine 5′-diphosphate

GMP:

Guanosine 5′-monophosphate

GTP:

Guanosine 5′-triphosphate 1-methyl-4-phenylpyridinium

iNOS:

Inducible nitric oxide synthase

MAPK:

Mitogen-activated protein kinase

NMDAR:

N-methyl-D-aspartate receptor

NGF:

Nerve growth factor

NF-κB:

Nuclear factor-kappaB

OGD:

Oxygen and glucose deprivation

PC12:

Pheochromocytoma

PI3K:

Phosphatidylinositol-3 kinase

QA:

Quinolinic acid

ROS:

Reactive oxygen species

SCI:

Spinal cord injury

SOD:

Superoxide dismutase

TST:

Tail suspension test

References

  1. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55. doi:10.1146/annurev.neuro.24.1.31

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–81

    CAS  PubMed  Google Scholar 

  3. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Cell Membr. Recept. Drugs Horm. A Multidiscip. Approach. Raven Press, New York, pp 107–118

  4. Jacobson KA, Balasubramanian R, Deflorian F, Gao ZG (2012) G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal 8:419–436. doi:10.1007/s11302-012-9294-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56:208–215. doi:10.1016/j.neuropharm.2008.06.067

    Article  CAS  PubMed  Google Scholar 

  6. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590. doi:10.1038/nrd2605

    Article  CAS  PubMed  Google Scholar 

  7. Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39. doi:10.1016/j.it.2003.11.003

    Article  PubMed  CAS  Google Scholar 

  8. Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787. doi:10.1146/annurev.pharmtox.41.1.775

    Article  CAS  PubMed  Google Scholar 

  9. Lovatt D, Xu Q, Liu W et al (2012) Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci U S A 109:6265–70. doi:10.1073/pnas.1120997109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484. doi:10.1046/j.1471-4159.2001.00607.x

    Article  CAS  PubMed  Google Scholar 

  11. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125. doi:10.1016/S0197-0186(00)00034-6

    Article  CAS  PubMed  Google Scholar 

  12. Boison D (2008) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8:2–7. doi:10.1016/j.coph.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  13. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta - Mol Cell Res 1783:673–694. doi:10.1016/j.bbamcr.2008.01.024

    Article  CAS  Google Scholar 

  14. Jacobson KA, Gao Z-G (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264. doi:10.1038/nrd1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rathbone M, Pilutti L, Caciagli F, Jiang S (2008) Neurotrophic effects of extracellular guanosine. Nucleosides Nucleotides Nucleic Acids 27:666–672. doi:10.1080/15257770802143913

    Article  CAS  PubMed  Google Scholar 

  16. Johnston CA, Siderovski DP (2007) Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol Pharmacol 72:219–230. doi:10.1124/mol.107.034348

    Article  CAS  PubMed  Google Scholar 

  17. Sebastião AM, Ribeiro JA (2000) Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci 21:341–346. doi:10.1016/S0165-6147(00)01517-0

    Article  PubMed  Google Scholar 

  18. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483. doi:10.1007/s00018-007-6497-0

    Article  CAS  PubMed  Google Scholar 

  19. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436. doi:10.1038/nrn1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fredholm BB, Chen JF, Cunha RA et al (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270. doi:10.1016/S0074-7742(05)63007-3

    Article  CAS  PubMed  Google Scholar 

  21. Gomes CV, Kaster MP, Tomé AR et al (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399. doi:10.1016/j.bbamem.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  22. Ramlackhansingh AF, Bose SK, Ahmed I et al (2011) Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 76:1811–1816. doi:10.1212/WNL.0b013e31821ccce4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angulo E, Casadó V, Mallol J et al (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13:440–451. doi:10.1111/j.1750-3639.2003.tb00475.x

    Article  CAS  PubMed  Google Scholar 

  24. Kaster MP, Rosa AO, Rosso MM et al (2004) Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci Lett 355:21–24. doi:10.1016/j.neulet.2003.10.040

    Article  CAS  PubMed  Google Scholar 

  25. Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–57. doi:10.1038/nrd2518

    Article  PubMed  CAS  Google Scholar 

  26. Bokoch MP, Zou Y, Rasmussen SGF et al (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–12. doi:10.1038/nature08650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116:401–416. doi:10.1016/j.pharmthera.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  28. Santos TG, Souza DO, Tasca CI (2006) GTP uptake into rat brain synaptic vesicles. Brain Res 1070:71–76. doi:10.1016/j.brainres.2005.10.099

    Article  CAS  PubMed  Google Scholar 

  29. Ciccarelli R, Ballerini P, Sabatino G et al (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19:395–414. doi:10.1016/S0736-5748(00)00084-8

    Article  CAS  PubMed  Google Scholar 

  30. Ciccarelli R, Di Iorio P, Giuliani P et al (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25:93–98

    Article  CAS  PubMed  Google Scholar 

  31. Meghji P, Tuttle JB, Rubio R (1989) Adenosine formation and release by embryonic chick neurons and glia in cell culture. J Neurochem 53:1852–1860

    Article  CAS  PubMed  Google Scholar 

  32. Uemura Y, Miller JM, Matson WR, Beal MF (1991) Neurochemical analysis of focal ischemia in rats. Stroke 22:1548–1553

    Article  CAS  PubMed  Google Scholar 

  33. Neary JT, Rathbone MP, Cattabeni F et al (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18. doi:10.1016/0166-2236(96)81861-3

    Article  CAS  PubMed  Google Scholar 

  34. Ribeiro FF, Xapelli S, Miranda-Lourenço C et al (2015) Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology. doi:10.1016/j.neuropharm.2015.11.006

    Google Scholar 

  35. Rathbone MP, Middlemiss PJ, Gysbers JW et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690. doi:10.1016/S0301-0082(99)00017-9

    Article  CAS  PubMed  Google Scholar 

  36. Giuliani P, Romano S, Ballerini P et al (2012) Protective activity of guanosine in an in vitro model of Parkinson’s disease. Panminerva Med 54:43–51

    CAS  PubMed  Google Scholar 

  37. Middlemiss PJ, Gysbers JW, Rathbone MP (1995) Extracellular guanosine and guanosine-5′-triphosphate increase: NGF synthesis and release from cultured mouse neopallial astrocytes. Brain Res 677:152–6. doi:10.1016/0006-8993(95)00156-K

    Article  CAS  PubMed  Google Scholar 

  38. Su C, Elfeki N, Ballerini P et al (2009) Guanosine improves motor behavior, reduces apoptosis, and stimulates neurogenesis in rats with parkinsonism. J Neurosci Res 87:617–625. doi:10.1002/jnr.21883

    Article  CAS  PubMed  Google Scholar 

  39. Di Iorio P, Caciagli F, Giuliani P et al (2001) Purine nucleosides protect injured neurons and stimulate neuronal regeneration by intracellular and membrane receptor-mediated mechanisms. Drug Dev Res 52:303–315. doi:10.1002/ddr.1128

    Article  Google Scholar 

  40. Rathbone MP, Middlemiss PJ, DeLuca B, Jovetich M (1991) Extracellular guanosine increases astrocyte cAMP: inhibition by adenosine A2 antagonists. Neuroreport 2:661–664. doi:10.1097/00001756-199111000-00007

    Article  CAS  PubMed  Google Scholar 

  41. Ciccarelli R, Di Iorio P, D’Alimonte I et al (2000) Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by the Co-presence of microglia. Glia 29:202–11. doi:10.1002/(SICI)1098-1136(20000201)29:3<202::AID-GLIA2>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  42. Decker H, Francisco SS, Mendes-de-Aguiar CBN et al (2007) Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture. J Neurosci Res 85:1943–51. doi:10.1002/jnr.21332

    Article  CAS  PubMed  Google Scholar 

  43. Gysbers JW, Rathbone MP (1992) Guanosine enhances NGF-stimulated neurite outgrowth in PC12 cells. Neuroreport 3:997–1000

    Article  CAS  PubMed  Google Scholar 

  44. Gysbers JW, Rathbone MP (1996) GTP and guanosine synergistically enhance NGF-induced neurite outgrowth from PC12 cells. Int J Dev Neurosci 14:19–34. doi:10.1016/0736-5748(95)00083-6

    Article  CAS  PubMed  Google Scholar 

  45. Kim JK, Rathbone MP, Middlemiss PJ et al (1991) Purinergic stimulation of astroblast proliferation: guanosine and its nucleotides stimulate cell division in chick astroblasts. J Neurosci Res 28:442–55. doi:10.1002/jnr.490280318

    Article  CAS  PubMed  Google Scholar 

  46. Gysbers JW, Guarnieri S, Mariggiò MA et al (2000) Extracellular guanosine 5′ triphosphate enhances nerve growth factor- induced neurite outgrowth via increases in intracellular calcium. Neuroscience 96:817–824. doi:10.1016/S0306-4522(99)00588-6

    Article  CAS  PubMed  Google Scholar 

  47. Polleux F, Snider W (2010) Initiating and growing an axon. Cold Spring Harb Perspect Biol 2:1–20. doi:10.1101/cshperspect.a001925

    Article  CAS  Google Scholar 

  48. De Curtis I (2007) Intracellular mechanisms for neuritogenesis. Intracell Mech Neuritogenes 1–333. doi: 10.1007/978-0-387-68561-8

  49. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428. doi:10.1073/pnas.73.7.2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huffaker T, Corcoran T, Wagner JA (1984) Adenosine inhibits cell division and promotes neurite extension in PC12 cells. J Cell Physiol 120:188–196. doi:10.1002/jcp.1041200212

    Article  CAS  PubMed  Google Scholar 

  51. Guroff G, Dickens G, End D, Londos C (1981) The action of adenosine analogs on PC12 cells. J Neurochem 37:1431–9

    Article  CAS  PubMed  Google Scholar 

  52. Gysbers JW, Rathbone MP (1996) Neurite outgrowth in PC12 cells is enhanced by guanosine through both cAMP-dependent and -independent mechanisms. Neurosci Lett 220:175–178. doi:10.1016/S0304-3940(96)13253-5

    Article  CAS  PubMed  Google Scholar 

  53. Bau C, Middlemiss PJ, Hindley S et al (2005) Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP. Purinergic Signal 1:161–172. doi:10.1007/s11302-005-6214-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thauerer B, zur Nedden S, Baier-Bitterlich G (2010) Vital role of protein kinase C-related kinase in the formation and stability of neurites during hypoxia. J Neurochem 113:432–46. doi:10.1111/j.1471-4159.2010.06624.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guarnieri S, Pilla R, Morabito C et al (2009) Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int J Dev Neurosci 27:135–147. doi:10.1016/j.ijdevneu.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  56. Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58:193–201. doi:10.1001/archopht.1957.00940010205006

    Article  CAS  PubMed  Google Scholar 

  57. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337. doi:10.1016/S0143-4160(03)00141-6

    Article  CAS  PubMed  Google Scholar 

  58. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science (80-) 164:719–721. doi: 10.1126/science.164.3880.719

  59. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387. doi:10.1038/aps.2009.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. doi:10.1016/S0301-0082(00)00067-8

    Article  CAS  PubMed  Google Scholar 

  61. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14. doi:10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  62. Frizzo ME, Soares FAA, Dall’Onder LP et al (2003) Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptake. Brain Res 972:84–9. doi:10.1016/S0006-8993(03)02506-X

    Article  CAS  PubMed  Google Scholar 

  63. Frizzo ME, Lara DR, Prokopiuk ADS et al (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22:353–363. doi:10.1023/A:1020728203682

    Article  CAS  PubMed  Google Scholar 

  64. Thomazi AP, Godinho GFRS, Rodrigues JM et al (2004) Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine. Mech Ageing Dev 125:475–481. doi:10.1016/j.mad.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  65. Gottfried C, Tramontina F, Gonçalves D et al (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H(2)O(2). Mech Ageing Dev 123:1333–40

    Article  CAS  PubMed  Google Scholar 

  66. Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206. doi:10.1038/nrn1870

    Article  CAS  PubMed  Google Scholar 

  67. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059–70. doi:10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  68. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355. doi:10.1016/j.neuint.2007.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giuliani P, Ballerini P, Ciccarelli R et al (2012) Tissue distribution and metabolism of guanosine in rats following intraperitoneal injection. J Biol Regul Homeost Agents 26:51–65

    CAS  PubMed  Google Scholar 

  70. Jiang S, Fischione G, Giuliani P et al (2008) Metabolism and distribution of guanosine given intraperitoneally: implications for spinal cord injury. Nucleosides Nucleotides Nucleic Acids 27:673–680. doi:10.1080/15257770802143962

    Article  CAS  PubMed  Google Scholar 

  71. Vinadé ER, Izquierdo I, Lara DR et al (2004) Oral administration of guanosine impairs inhibitory avoidance performance in rats and mice. Neurobiol Learn Mem 81:137–43. doi:10.1016/j.nlm.2003.12.003

    Article  PubMed  CAS  Google Scholar 

  72. Schmidt AP, Böhmer AE, Schallenberger C et al (2010) Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice. Br J Pharmacol 159:1247–63. doi:10.1111/j.1476-5381.2009.00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vinade ER, Schmidt AP, Frizzo ME et al (2005) Effects of chronic administered guanosine on behavioral parameters and brain glutamate uptake in rats. J Neurosci Res 79:248–253. doi:10.1002/jnr.20327

    Article  CAS  PubMed  Google Scholar 

  74. Nagasawa K, Kawasaki F, Tanaka A et al (2007) Characterization of guanine and guanosine transport in primary cultured rat cortical astrocytes and neurons. Glia 55:1397–404. doi:10.1002/glia.20550

    Article  PubMed  Google Scholar 

  75. Peng L, Huang R, Yu ACH et al (2005) Nucleoside transporter expression and function in cultured mouse astrocytes. Glia 52:25–35. doi:10.1002/glia.20216

    Article  PubMed  Google Scholar 

  76. Jones KW, Hammond JR (1995) Characterization of nucleoside transport activity in rabbit cortical synaptosomes. Can J Physiol Pharmacol 73:1733–1741. doi:10.1139/y95-237

    Article  CAS  PubMed  Google Scholar 

  77. Kalaria RN, Harik SI (1988) Adenosine receptors and the nucleoside transporter in human brain vasculature. J Cereb Blood Flow Metab 8:32–39. doi:10.1038/jcbfm.1988.5

    Article  CAS  PubMed  Google Scholar 

  78. Patil SD, Unadkat JD (1997) Sodium-dependent nucleoside transport in the human intestinal brush-border membrane. Am J Physiol 272:1314–1320

    Google Scholar 

  79. Ciruela F (2013) Guanosine behind the scene. J Neurochem 126:425–427. doi:10.1111/jnc.12328

    Article  CAS  PubMed  Google Scholar 

  80. Thauerer B, Zur Nedden S, Baier-Bitterlich G (2012) Purine nucleosides: endogenous neuroprotectants in hypoxic brain. J Neurochem 121:329–42. doi:10.1111/j.1471-4159.2012.07692.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Müller CE, Scior T (1993) Adenosine receptors and their modulators. Pharm Acta Helv 68:77–111. doi:10.1016/0031-6865(93)90012-U

    Article  PubMed  Google Scholar 

  82. Dal-Cim T, Ludka FK, Martins WC et al (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126:437–450. doi:10.1111/jnc.12324

    Article  CAS  PubMed  Google Scholar 

  83. D’Alimonte I, Flati V, D’Auro M et al (2007) Guanosine inhibits CD40 receptor expression and function induced by cytokines and beta amyloid in mouse microglia cells. J Immunol 178:720–731

    Article  PubMed  Google Scholar 

  84. Jackson EK, Gillespie DG (2013) Regulation of cell proliferation by the guanosine-adenosine mechanism: role of adenosine receptors. Physiol Rep 1, e00024. doi:10.1002/phy2.24

    PubMed  PubMed Central  Google Scholar 

  85. Jackson EK, Mi Z (2014) The guanosine-adenosine interaction exists in vivo. J Pharmacol Exp Ther 350:719–726. doi:10.1124/jpet.114.216978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Di Iorio P, Ballerini P, Traversa U et al (2004) The antiapoptotic effect of guanosine is mediated by the activation of the PI 3-kinase/AKT/PKB pathway in cultured rat astrocytes. Glia 46:356–368. doi:10.1002/glia.20002

    Article  PubMed  Google Scholar 

  87. Traversa U, Bombi G, Camaioni E et al (2003) Rat brain guanosine binding site. Bioorg Med Chem 11:5417–5425. doi:10.1016/j.bmc.2003.09.043

    Article  CAS  PubMed  Google Scholar 

  88. Volpini R, Marucci G, Buccioni M et al (2011) Evidence for the existence of a specific g protein-coupled receptor activated by guanosine. ChemMedChem 6:1074–80. doi:10.1002/cmdc.201100100

    Article  CAS  PubMed  Google Scholar 

  89. Traversa U, Bombi G, Di Iorio P et al (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135:969–76. doi:10.1038/sj.bjp.0704542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Quincozes-Santos A, Bobermin LD, de Souza DG et al (2013) Gliopreventive effects of guanosine against glucose deprivation in vitro. Purinergic Signal 9:643–654. doi:10.1007/s11302-013-9377-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pettifer KM, Kleywegt S, Bau CJ et al (2004) Guanosine protects SH-SY5Y cells against beta-amyloid-induced apoptosis. Neuroreport 15:833–836

    Article  CAS  PubMed  Google Scholar 

  92. Dal-Cim T, Molz S, Egea J et al (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3beta pathway. Neurochem Int 61:397–404. doi:10.1016/j.neuint.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  93. Hansel G, Tonon AC, Guella FL et al (2014) Guanosine protects against cortical focal ischemia. Involvement of inflammatory response. Mol Neurobiol 52:1791–1803. doi:10.1007/s12035-014-8978-0

    Article  PubMed  CAS  Google Scholar 

  94. Bellaver B, Souza DG, Bobermin LD et al (2015) Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal 11:571–580. doi:10.1007/s11302-015-9475-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schmidt AP, Lara DR, De Faria MJ et al (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864:40–43. doi:10.1016/S0006-8993(00)02106-5

    Article  CAS  PubMed  Google Scholar 

  96. De Oliveira DL, Horn JF, Rodrigues JM et al (2004) Quinolinic acid promotes seizures and decreases glutamate uptake in young rats: reversal by orally administered guanosine. Brain Res 1018:48–54. doi:10.1016/j.brainres.2004.05.033

    Article  PubMed  CAS  Google Scholar 

  97. Bettio LEB, Freitas AE, Neis VB et al (2014) Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol Biochem Behav 127:7–14. doi:10.1016/j.pbb.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  98. Petronilho F, Périco SR, Vuolo F et al (2012) Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 26:904–910. doi:10.1016/j.bbi.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  99. Paniz LG, Calcagnotto ME, Pandolfo P et al (2014) Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab Brain Dis 29:645–54. doi:10.1007/s11011-014-9548-x

    Article  CAS  PubMed  Google Scholar 

  100. Quincozes-Santos A, Bobermin LD, Souza DG et al (2014) Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role for heme oxygenase 1. J Neurochem 61–74. doi: 10.1111/jnc.12694

  101. Moretto MB, Arteni NS, Lavinsky D et al (2005) Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: prevention by guanosine. Exp Neurol 195:400–6. doi:10.1016/j.expneurol.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  102. Connell BJ, Di Iorio P, Sayeed I et al (2013) Guanosine protects against reperfusion injury in rat brains after ischemic stroke. J Neurosci Res 91:262–272. doi:10.1002/jnr.23156

    Article  CAS  PubMed  Google Scholar 

  103. Tarozzi A, Merlicco A, Morroni F et al (2010) Guanosine protects human neuroblastoma cells from oxidative stress and toxicity induced by Amyloid-beta peptide oligomers. J Biol Regul Homeost Agents 24:297–306

    CAS  PubMed  Google Scholar 

  104. Giuliani P, Ballerini P, Buccella S et al (2015) Guanosine protects glial cells against 6-hydroxydopamine toxicity. Adv Exp Med Biol 837:23–33. doi:10.1007/978-3-319-10006-7

    Article  PubMed  Google Scholar 

  105. Li D-W, Yao M, Dong Y-H et al (2014) Guanosine exerts neuroprotective effects by reversing mitochondrial dysfunction in a cellular model of Parkinson’s disease. - PubMed - NCBI. Int J Mol Med 34:1358–1364

    CAS  PubMed  Google Scholar 

  106. Pettifer KM, Jiang S, Bau C et al (2007) MPP(+)-induced cytotoxicity in neuroblastoma cells: antagonism and reversal by guanosine. Purinergic Signal 3:399–409. doi:10.1007/s11302-007-9073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jiang S, Bendjelloul F, Ballerini P et al (2007) Guanosine reduces apoptosis and inflammation associated with restoration of function in rats with acute spinal cord injury. Purinergic Signal 3:411–21. doi:10.1007/s11302-007-9079-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang S, Ballerini P, Buccella S et al (2008) Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine. Purinergic Signal 4:61–71. doi:10.1007/s11302-007-9093-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tian G-F, Azmi H, Takano T et al (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981. doi:10.1038/nm1277

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jen JC, Wan J, Palos TP et al (2005) Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65:529–534. doi:10.1212/01.WNL.0000172638.58172.5a

    Article  CAS  PubMed  Google Scholar 

  111. Tanaka K, Watase K, Manabe T, et al. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science (80-) 276:1699–1702. doi: 10.1126/science.276.5319.1699

  112. Ueda Y, Doi T, Tokumaru J et al (2001) Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid. J Neurochem 76:892–900. doi:10.1046/j.1471-4159.2001.00087.x

    Article  CAS  PubMed  Google Scholar 

  113. Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686. doi:10.1016/S0896-6273(00)80086-0

    Article  CAS  PubMed  Google Scholar 

  114. Lara DR, Schmidt AP, Frizzo MES et al (2001) Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res 912:176–180. doi:10.1016/S0006-8993(01)02734-2

    Article  CAS  PubMed  Google Scholar 

  115. Heyes MP, Achim CL, Wiley CA et al (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320(Pt 2):595–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64:185–218. doi:10.1016/S0301-0082(00)00032-0

    Article  CAS  PubMed  Google Scholar 

  117. Tavares RG, Tasca CI, Santos CES et al (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627. doi:10.1016/S0197-0186(01)00133-4

    Article  CAS  PubMed  Google Scholar 

  118. Tavares RG, Tasca CI, Santos CE et al (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuroreport 11:249–253

    Article  CAS  PubMed  Google Scholar 

  119. Soares FA, Schmidt AP, Farina M et al (2004) Anticonvulsant effect of GMP depends on its conversion to guanosine. Brain Res 1005:182–6. doi:10.1016/j.brainres.2004.01.053

    Article  CAS  PubMed  Google Scholar 

  120. Vinadé ER, Schmidt AP, Frizzo MES et al (2003) Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res 977:97–102. doi:10.1016/S0006-8993(03)02769-0

    Article  PubMed  CAS  Google Scholar 

  121. Tavares RG, Schmidt AP, Abud J et al (2005) In vivo quinolinic acid increases synaptosomal glutamate release in rats: reversal by guanosine. Neurochem Res 30:439–44. doi:10.1007/s11064-005-2678-0

    Article  CAS  PubMed  Google Scholar 

  122. Torres FV, da Silva FM, Antunes C et al (2010) Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp Neurol 221:296–306. doi:10.1016/j.expneurol.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  123. Hiyoshi T, Kambe D, Karasawa J, Chaki S (2014) Involvement of glutamatergic and GABAergic transmission in MK-801-increased gamma band oscillation power in rat cortical electroencephalograms. Neuroscience 280:262–274. doi:10.1016/j.neuroscience.2014.08.047

    Article  CAS  PubMed  Google Scholar 

  124. Kehrer C, Dugladze T, Maziashvili N et al (2007) Increased inhibitory input to CA1 pyramidal cells alters hippocampal gamma frequency oscillations in the MK-801 model of acute psychosis. Neurobiol Dis 25:545–552. doi:10.1016/j.nbd.2006.10.015

    Article  CAS  PubMed  Google Scholar 

  125. Ma J, Leung LS (2014) Deep brain stimulation of the medial septum or nucleus accumbens alleviates psychosis-relevant behavior in ketamine-treated rats. Behav Brain Res 266:174–182. doi:10.1016/j.bbr.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  126. Hong LE, Summerfelt A, Buchanan RW et al (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35:632–640. doi:10.1038/npp.2009.168

    Article  PubMed  Google Scholar 

  127. Tort ABL, Mantese CE, dos Anjos GM et al (2004) Guanosine selectively inhibits locomotor stimulation induced by the NMDA antagonist dizocilpine. Behav Brain Res 154:417–22. doi:10.1016/j.bbr.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  128. Jackson EK, Cheng D, Jackson TC et al (2013) Extracellular guanosine regulates extracellular adenosine levels. Am J Physiol Cell Physiol 304:C406–21. doi:10.1152/ajpcell.00212.2012

    Article  CAS  PubMed  Google Scholar 

  129. Di Iorio P, Kleywegt S, Ciccarelli R et al (2002) Mechanisms of apoptosis induced by purine nucleosides in astrocytes. Glia 38:179–90. doi:10.1002/glia.10055

    Article  PubMed  Google Scholar 

  130. Boison D (2005) Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist 11:25–36. doi:10.1177/1073858404269112

    Article  CAS  PubMed  Google Scholar 

  131. Kovács Z, Kékesi KA, Dobolyi Á et al (2015) Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in Wistar Albino Glaxo Rijswijk rats. Neuroscience 300:593–608. doi:10.1016/j.neuroscience.2015.05.054

    Article  PubMed  CAS  Google Scholar 

  132. Tabakman R, Jiang H, Shahar I et al (2005) Neuroprotection by NGF in the PC12 in vitro OGD model: Involvement of mitogen-activated protein kinases and gene expression. In: Ann. N. Y. Acad. Sci. pp 84–96

  133. Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91. doi:10.1016/j.bbadis.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  134. Culmsee C, Zhu C, Landshamer S et al (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25:10262–10272. doi:10.1523/JNEUROSCI.2818-05.2005

    Article  CAS  PubMed  Google Scholar 

  135. Neumann J, Gunzer M, Gutzeit HO et al (2006) Microglia provide neuroprotection after ischemia. FASEB J 20:714–716. doi:10.1096/fj.05-4882fje

    CAS  PubMed  Google Scholar 

  136. Chu K, Lee ST, Sinn DI et al (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38:177–182. doi:10.1161/01.STR.0000252091.36912.65

    Article  CAS  PubMed  Google Scholar 

  137. Fujimoto S, Katsuki H, Kume T et al (2004) Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures. Neurosci Res 50:179–187. doi:10.1016/j.neures.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  138. Hazell AS (2007) Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int 50:941–953. doi:10.1016/j.neuint.2007.04.026

    Article  CAS  PubMed  Google Scholar 

  139. Litsky ML, Hohl CM, Lucas JH, Jurkowitz MS (1999) Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res 821:426–432. doi:10.1016/S0006-8993(99)01086-0

    Article  CAS  PubMed  Google Scholar 

  140. Oleskovicz SP, Martins WC, Leal RB, Tasca CI (2008) Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen-glucose deprivation. Neurochem Int 52:411–418. doi:10.1016/j.neuint.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  141. Dal-Cim T, Martins WC, Santos AR, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2) + −activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220. doi:10.1016/j.neuroscience.2011.03.022

    Article  CAS  PubMed  Google Scholar 

  142. Wu X, Kihara T, Akaike A et al (2010) PI3K/Akt/mTOR signaling regulates glutamate transporter 1 in astrocytes. Biochem Biophys Res Commun 393:514–518. doi:10.1016/j.bbrc.2010.02.038

    Article  CAS  PubMed  Google Scholar 

  143. Matos M, Augusto E, Dos Santos-Rodrigues A et al (2012) Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60:702–16. doi:10.1002/glia.22290

    Article  PubMed  Google Scholar 

  144. Matos M, Augusto E, Agostinho P et al (2013) Antagonistic interaction between adenosine A2A receptors and Na+/K + −ATPase-α2 controlling glutamate uptake in astrocytes. J Neurosci 33:18492–502. doi:10.1523/JNEUROSCI.1828-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Benfenati V, Caprini M, Nobile M et al (2006) Guanosine promotes the up-regulation of inward rectifier potassium current mediated by Kir4.1 in cultured rat cortical astrocytes. J Neurochem 98:430–45. doi:10.1111/j.1471-4159.2006.03877.x

    Article  CAS  PubMed  Google Scholar 

  146. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68. doi:10.1016/j.jneuroim.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  147. Nilupul Perera M, Ma HK, Arakawa S et al (2006) Inflammation following stroke. J Clin Neurosci 13:1–8. doi:10.1016/j.jocn.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  148. Chang R, Algird A, Bau C et al (2008) Neuroprotective effects of guanosine on stroke models in vitro and in vivo. Neurosci Lett 431:101–105. doi:10.1016/j.neulet.2007.11.072

    Article  CAS  PubMed  Google Scholar 

  149. Rathbone MP, Saleh TM, Connell BJ et al (2011) Systemic administration of guanosine promotes functional and histological improvement following an ischemic stroke in rats. Brain Res 1407:79–89. doi:10.1016/j.brainres.2011.06.027

    Article  CAS  PubMed  Google Scholar 

  150. Nour M, Scalzo F, Liebeskind DS (2013) Ischemia-reperfusion injury in stroke. Interv Neurol 1:185–99. doi:10.1159/000353125

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hansel G, Ramos DB, Delgado CA et al (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS One 9, e90693. doi:10.1371/journal.pone.0090693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415. doi:10.1038/nrn1106

    Article  CAS  PubMed  Google Scholar 

  153. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. doi:10.2174/157015909787602823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Akwa Y, Allain H, Bentue-Ferrer D et al (2005) Neuroprotection and neurodegenerative diseases: from biology to clinical practice. Alzheimer Dis Assoc Disord 19:226

    Article  PubMed  Google Scholar 

  155. De Felice FG, Velasco PT, Lambert MP et al (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–601. doi:10.1074/jbc.M607483200

    Article  PubMed  CAS  Google Scholar 

  156. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208. doi:10.1006/jsbi.2000.4274

    Article  CAS  PubMed  Google Scholar 

  157. Roos DH, Puntel RL, Santos MM et al (2009) Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system. Toxicol in Vitro 23:302–307. doi:10.1016/j.tiv.2008.12.020

    Article  CAS  PubMed  Google Scholar 

  158. Gudkov SV, Shtarkman IN, Smirnova VS et al (2006) Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat Res 165:538–545. doi:10.1667/RR3552.1

    Article  CAS  PubMed  Google Scholar 

  159. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. doi:10.1016/S1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  160. Hartley A, Stone JM, Heron C et al (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 63:1987–1990. doi:10.1046/j.1471-4159.1994.63051987.x

    Article  CAS  PubMed  Google Scholar 

  161. Kalivendi SV, Cunningham S, Kotamraju S et al (2004) Synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J Biol Chem 279:15240–15247. doi:10.1074/jbc.M312497200

    Article  CAS  PubMed  Google Scholar 

  162. Su C, Wang P, Jiang C et al (2013) Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J Biol Regul Homeost Agents 27:673–680

    CAS  PubMed  Google Scholar 

  163. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240. doi:10.1016/j.tins.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  164. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125. doi:10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  165. Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141. doi:10.1016/S0079-6123(06)61009-1

    Article  PubMed  Google Scholar 

  166. Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25, E2. doi:10.3171/FOC.2008.25.11.E2

    Article  PubMed  Google Scholar 

  167. Thuret S, Moon LDF, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–43. doi:10.1038/nrn1955

    Article  CAS  PubMed  Google Scholar 

  168. Jiang S, Khan MI, Lu Y et al (2003) Guanosine promotes myelination and functional recovery in chronic spinal injury. Neuroreport 14:2463–7. doi:10.1097/01.wnr.0000095494.09138.ff

    Article  CAS  PubMed  Google Scholar 

  169. Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21. doi:10.1016/j.coph.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  170. Schmidt HD, Banasr M, Duman RS (2008) Future antidepressant targets: neurotrophic factors and related signaling cascades. Drug Discov Today Ther Strateg 5:151–156. doi:10.1016/j.ddstr.2008.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  171. Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30:563–569. doi:10.1016/j.tips.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  172. Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35:47–56. doi:10.1016/j.tins.2011.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bettio LEB, Cunha MP, Budni J et al (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234:137–148. doi:10.1016/j.bbr.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  174. Li N, Lee B, Liu RJ, et al. (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science (80-) 329:959–964. doi: 10.1126/science.1190287

  175. Bettio LEB, Neis VB, Pazini FL et al (2016) The antidepressant-like effect of chronic guanosine treatment is associated with increased hippocampal neuronal differentiation. Eur J Neurosci. doi:10.1111/ejn.13172

    PubMed  Google Scholar 

  176. Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19. doi:10.1016/j.neuron.2009.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47. doi:10.1016/S0166-4328(02)00272-3

    Article  CAS  PubMed  Google Scholar 

  178. Frizzo ME, Lara DR, Dahm KC et al (2001) Activation of glutamate uptake by guanosine in primary astrocyte cultures. Neuroreport 12:879–81

    Article  CAS  PubMed  Google Scholar 

  179. Roesler R, Vianna MR, Lara DR et al (2000) Guanosine impairs inhibitory avoidance performance in rats. Neuroreport 11:2537–2540. doi:10.1097/00001756-200008030-00038

    Article  CAS  PubMed  Google Scholar 

  180. Izquierdo I (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316. doi:10.1006/nlme.1997.3799

    Article  CAS  PubMed  Google Scholar 

  181. Ganzella M, De Oliveira EDA, Comassetto DD et al (2012) Effects of chronic guanosine treatment on hippocampal damage and cognitive impairment of rats submitted to chronic cerebral hypoperfusion. Neurol Sci 33:985–997. doi:10.1007/s10072-011-0872-1

    Article  PubMed  Google Scholar 

  182. Chizh BA (2002) Novel approaches to targeting glutamate receptors for the treatment of chronic pain: review article. Amino Acids 23:169–176. doi:10.1007/s00726-001-0124-4

    Article  CAS  PubMed  Google Scholar 

  183. Sung B, Wang S, Zhou B et al (2007) Altered spinal arachidonic acid turnover after peripheral nerve injury regulates regional glutamate concentration and neuropathic pain behaviors in rats. Pain 131:121–31. doi:10.1016/j.pain.2006.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Weng H-R, Chen JH, Cata JP (2006) Inhibition of glutamate uptake in the spinal cord induces hyperalgesia and increased responses of spinal dorsal horn neurons to peripheral afferent stimulation. Neuroscience 138:1351–60. doi:10.1016/j.neuroscience.2005.11.061

    Article  CAS  PubMed  Google Scholar 

  185. Schmidt AP, Böhmer AE, Schallenberger C et al (2009) Spinal mechanisms of antinociceptive action caused by guanosine in mice. Eur J Pharmacol 613:46–53. doi:10.1016/j.ejphar.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  186. Schmidt AP, Böhmer AE, Leke R et al (2008) Antinociceptive effects of intracerebroventricular administration of guanine-based purines in mice: evidences for the mechanism of action. Brain Res 1234:50–8. doi:10.1016/j.brainres.2008.07.091

    Article  CAS  PubMed  Google Scholar 

  187. Schmidt AP, Tort ABL, Silveira PP et al (2009) The NMDA antagonist MK-801 induces hyperalgesia and increases CSF excitatory amino acids in rats: reversal by guanosine. Pharmacol Biochem Behav 91:549–53. doi:10.1016/j.pbb.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  188. Schmidt AP, Paniz L, Schallenberger C et al (2010) Guanosine prevents thermal hyperalgesia in a rat model of peripheral mononeuropathy. J Pain 11:131–141. doi:10.1016/j.jpain.2009.06.010

    Article  CAS  PubMed  Google Scholar 

  189. Lopes LV, Sebastião AM, Ribeiro JA (2011) Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem 11:1087–1101. doi:10.2174/156802611795347591

    Article  CAS  PubMed  Google Scholar 

  190. Rizzolio F, La Montagna R, Tuccinardi T et al (2011) Adenosine receptor ligands in clinical trials. Curr Top Med Chem 10:1036–1045

    Article  Google Scholar 

Download references

Acknowledgments

L.B., J.G.M., and A.L.S.R. acknowledge funding from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Project #403120/2012-8 of the Brazilian Federal Government. A.L.S.R. is a CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lúcia S. Rodrigues.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettio, L.E.B., Gil-Mohapel, J. & Rodrigues, A.L.S. Guanosine and its role in neuropathologies. Purinergic Signalling 12, 411–426 (2016). https://doi.org/10.1007/s11302-016-9509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9509-4

Keywords

Navigation