Skip to main content
Log in

Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. The aim of this study is to evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. In 210 Israeli Defense Forces (IDF) military conscripts, stress fracture injury was diagnosed (n = 43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n = 125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson’s chi-squared (χ 2) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. The variant allele of P2X7R SNP rs3751143 (Glu496Ala—loss of function) was associated with stress fracture injury, whilst the variant allele of rs1718119 (Ala348Thr—gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P < 0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P < 0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P < 0.05). The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fredericson M, Chew K, Ngo J, Cleek T, Kiratli J, Cobb K (2007) Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med 41:664–668

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gam A, Goldstein L, Karmon Y, Mintser I, Grotto I, Guri A, Goldberg A, Ohana N, Onn E, Levi Y, Bar-Dayan Y (2005) Comparison of stress fractures of male and female recruits during basic training in the Israeli anti-aircraft forces. Mil Med 170:711–712

    Article  Google Scholar 

  3. Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D, Magaudda L, Blandino A (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 235:553–561

    Article  PubMed  Google Scholar 

  4. McBryde AM (1985) Stress fractures in runners. Clin Sports Med 4:737–752

    PubMed  Google Scholar 

  5. Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J (2005) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20:809–816

    Article  PubMed  Google Scholar 

  6. Schaffler MB, Radin EL, Burr DB (1990) Long-term fatigue behaviour of compact bone at low strain magnitude and rate. Bone 11:321–326

    Article  CAS  PubMed  Google Scholar 

  7. Bennell KL, Matheson G, Meeuwisse W, Brukner P (1999) Risk factors for stress fractures. Sports Med 28:91–122

    Article  CAS  PubMed  Google Scholar 

  8. Warden SJ, Davis IS, Fredericson M (2014) Management and prevention of bone stress injuries in long distance runners. J Orthop Sports Phys Ther 44:749–765

    Article  PubMed  Google Scholar 

  9. Lambros G, Alder D (1997) Multiple stress fractures of the tibia in a healthy adult. Am J Orthop 26:687–688

    CAS  PubMed  Google Scholar 

  10. Singer A, Ben-Yehuda O, Ben-Ezra Z, Zaltzman S (1990) Multiple identical stress fractures in monozygotic twins. Case report. J Bone Joint Surg 72:444–445

    CAS  PubMed  Google Scholar 

  11. Gehrmann RM, Renard RL (2006) Current concepts review: stress fractures of the foot. Foot Ankle Int 27:577–750

    Google Scholar 

  12. Giladi M, Milgrom C, Kashtan H, Stein M, Chisin R, Dizian R (1986) Recurrent stress fractures in military recruits. One-year follow-up of 66 recruits. J Bone Joint Surg 68:439–441

    CAS  Google Scholar 

  13. Korvala J, Hartikka H, Pihlajamäki H, Solovieva S, Ruohola JP, Sahi T, Barral S, Ott J, Ala-Kokko L, Männikkö M (2010) Genetic predisposition for femoral neck stress fractures in military conscripts. BMC Genet 21(11):95

    Article  Google Scholar 

  14. Chatzipapas C, Boikos S, Drosos GI, Kazakos K, Tripsianis G, Serbis A, Stergiopoulos S, Tilkeridis C, Verettas DA, Stratakis CA (2009) Polymorphisms of the vitamin D receptor gene and stress fractures. Horm Metab Res 41:635–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yanovich R, Milgrom R, Friedman E, Moran DS (2011) Androgen receptor CAG repeat size is associated with stress fracture risk: a pilot study. Clin Orthop Relat Res 469(10):2925–2931

    Article  PubMed Central  PubMed  Google Scholar 

  16. Yanovich R, Friedman E, Milgrom R, Oberman B, Freedman L, Moran DS (2012) Candidate gene analysis in Israeli soldiers with stress fractures. J Sports Sci Med 11:147–155

    PubMed Central  PubMed  Google Scholar 

  17. Friedman E, Moran DS, Ben-Avraham D, Yanovich R, Atzmon G (2014) Novel candidate genes putatively involved in stress fracture predisposition detected by whole-exome sequencing. Genet Res (Camb) 96:e004. doi:10.1017/S001667231400007X

    Article  Google Scholar 

  18. Ohlendorff SD, Tofteng CL, Jensen JE, Petersen S, Civitelli R, Fenger M, Abrahamsen B, Hermann AP, Eiken P, Jørgensen NR (2007) Single nucleotide polymorphisms in the P2X7 gene are associated to fracture risk and to effect of estrogen treatment. Pharmacogenet Genomics 17:555–567

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280:42952–42959

    Article  CAS  PubMed  Google Scholar 

  20. Gartland A, Buckley KA, Bowler WB, Gallagher JA (2003) Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro. Calcif Tissue Int 73:361–369

    Article  CAS  PubMed  Google Scholar 

  21. Gartland A, Hipskind RA, Gallagher JA, Bowler WB (2001) Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 16:846–856

    Article  CAS  PubMed  Google Scholar 

  22. Gartland A, Buckley KA, Hipskind RA, Perry MJ, Tobias JH, Buell G, Chessell I, Bowler WB, Gallagher JA (2003) Multinucleated osteoclast formation in vivo and in vitro by P2X7 receptor-deficient mice. Crit Rev Eukaryot Gene Expr 13:243–253

    Article  CAS  PubMed  Google Scholar 

  23. Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, Grasser WA, Paralkar VM, Li M, Audoly LP, Gabel CA, Jee WS, Dixon SJ, Sims SM, Thompson DD (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17:1356–1367

    Article  CAS  PubMed  Google Scholar 

  24. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 15(168):6436–6445

    Article  Google Scholar 

  25. Jørgensen NR, Husted LB, Skarratt KK, Stokes L, Tofteng CL, Kvist T, Jensen JE, Eiken P, Brixen K, Fuller S, Clifton-Bligh R, Gartland A, Schwarz P, Langdahl BL, Wiley JS (2012) Single-nucleotide polymorphisms in the P2X7 receptor gene are associated with post-menopausal bone loss and vertebral fractures. Eur J Hum Genet 20:675–681

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gartland A, Skarratt KK, Hocking LJ, Parsons C, Stokes L, Jørgensen NR, Fraser WD, Reid DM, Gallagher JA, Wiley JS (2012) Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women. Eur J Hum Genet 20:559–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wesselius A, Bours MJ, Henriksen Z, Syberg S, Petersen S, Schwarz P, Jørgensen NR, van Helden S, Dagnelie PC (2013) Association of P2X(7) receptor polymorphisms with bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients. Osteoporos Int 24:1235–1246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Husted LB, Harsløf T, Stenkjær L, Carstens M, Jørgensen NR, Langdahl BL (2013) Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis. Osteoporos Int 24:949–959

    Article  CAS  PubMed  Google Scholar 

  29. Moran DS, Evans RK, Hadad E (2008) Imaging of lower extremity stress fracture injuries. Sports Med 38:345–356

    Article  PubMed  Google Scholar 

  30. Zwas ST, Elkanovitch R, Frank G (1987) Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 28:452–457

    CAS  PubMed  Google Scholar 

  31. Varley I, Hughes DC, Greeves JP, Stellingwerff T, Ranson C, Fraser WD, Sale C (2015) RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes. Bone 71:131–136

    Article  CAS  PubMed  Google Scholar 

  32. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  33. Stokes L, Fuller SJ, Sluyter R, Skarratt KK, Gu BJ, Wiley JS (2010) Two haplotypes of the P2X(7) receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function effect and enhanced interleukin-1beta secretion. J Fed Am Soc Exp Biol 24:2916–2927

    CAS  PubMed  Google Scholar 

  34. Gu W, Schlichthörl G, Hirsch JR, Engels H, Karschin C, Karschin A, Derst C, Steinlein OK, Daut J (2002) Expression pattern and functional characteristics of two novel splice variants of the two-pore-domain potassium channel TREK-2. J Physiol 539(Pt 3):657–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sluyter R, Shemon AN, Wiley JS (2004) Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1 beta release from human monocytes. J Immunol 172:399–405.

  36. Lorentzon M, Mellstrom D, Ohlsson C (2005) Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study. J Bone Miner Res 20:1936–1943

    Article  PubMed  Google Scholar 

  37. Tobias JH, Steer CD, Mattocks CG, Riddoch C, Ness AR (2007) Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res 22:101–109

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tenforde AS, Fredericson M (2011) Influence of sports participation on bone health in the young athlete: a review of the literature. Phys Med Rehabil 3:861–867

    Google Scholar 

  39. Bennell KL, Malcolm SA, Thomas SA (1996) Risk factors for stress fractures in track and field athletes: a 12 month prospective study. Am J Sports Med 24:810–818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all participants for taking part in the study.

Disclosure statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie P. Greeves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varley, I., Greeves, J.P., Sale, C. et al. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury. Purinergic Signalling 12, 103–113 (2016). https://doi.org/10.1007/s11302-016-9495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9495-6

Keywords

Navigation