Skip to main content
Log in

Paroxetine suppresses recombinant human P2X7 responses

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SSRI:

Selective serotonin reuptake inhibitor

IL-1β:

Interleukin 1 beta

LPS:

Lipopolysaccharide

References

  1. Wiley JS et al (2011) The human P2X7 receptor and its role in innate immunity. Tissue Antigens 78(5):321–332

    Article  CAS  PubMed  Google Scholar 

  2. Ferrari D et al (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol (Baltimore, Md : 1950) 176(7):3877–3883

    Article  CAS  Google Scholar 

  3. MacKenzie A et al (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15(5):825–835

    Article  CAS  PubMed  Google Scholar 

  4. Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Miller AH, Maletic V, Raison CL (2010) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry: 1–10

  6. Maes M et al (2012) Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 10:66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Barden N et al (2006) Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 141B(4):374–382

    Article  CAS  PubMed  Google Scholar 

  8. Lucae S et al (2006) P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 15(16):2438–2445

    Article  CAS  PubMed  Google Scholar 

  9. McQuillin A et al (2009) Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders. Mol Psychiatry 14(6):614–620

    Article  CAS  PubMed  Google Scholar 

  10. Soronen P et al (2011) P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts. Am J Med Genet B Neuropsychiatr Genet 156B(4):435–447

    Article  PubMed  Google Scholar 

  11. Green EK et al (2009) P2RX7: a bipolar and unipolar disorder candidate susceptibility gene? Am J Med Genet B Neuropsychiatr Genet 150B(8):1063–1069

    Article  CAS  PubMed  Google Scholar 

  12. Grigoroiu-Serbanescu M et al (2009) Variation in P2RX7 candidate gene (rs2230912) is not associated with bipolar I disorder and unipolar major depression in four European samples. Am J Med Genet B Neuropsychiatr Genet 150B(7):1017–1021

    Article  CAS  PubMed  Google Scholar 

  13. Viikki M et al (2011) P2RX7 polymorphisms Gln460Arg and His155Tyr are not associated with major depressive disorder or remission after SSRI or ECT. Neurosci Lett 493(3):127–130

    Article  CAS  PubMed  Google Scholar 

  14. Stokes L et al (2010) Two haplotypes of the P2X(7) receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function effect and enhanced interleukin-1beta secretion. FASEB J 24(8):2916–2927

    Article  CAS  PubMed  Google Scholar 

  15. Basso A et al. (2008) Behavioral profile of P2X7 receptor knockout mice in animal models of depression, anxiety: relevance for neuropsychiatric disorders. Behav Brain Res: 46

  16. Csolle C et al. (2012) The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int J Neuropsychopharmacol: 1–21

  17. Stokes L, Spencer SJ, Jenkins TA (2015) Understanding the role of P2X7 in affective disorders—are glial cells the major players? Front Cell Neurosci 9:258

    Article  PubMed Central  PubMed  Google Scholar 

  18. Coddou C et al (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63(3):641–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bartlett R, Stokes L, Sluyter R (2014) The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 66(3):638–675

    Article  CAS  PubMed  Google Scholar 

  20. Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120(8):1483–1490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Virginio C et al (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36(9):1285–1294

    Article  CAS  PubMed  Google Scholar 

  22. Shemon AN et al (2004) Chelerythrine and other benzophenanthridine alkaloids block the human P2X7 receptor. Br J Pharmacol 142(6):1015–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shemon AN et al (2008) Inhibition of the human P2X7 receptor by a novel protein tyrosine kinase antagonist. Biochem Biophys Res Commun 365(3):515–520

    Article  CAS  PubMed  Google Scholar 

  24. Michel AD et al (2006) Species and response dependent differences in the effects of MAPK inhibitors on P2X(7) receptor function. Br J Pharmacol 149(7):948–957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ma W et al (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328(2):409–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Norenberg W et al (2011) Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J Biol Chem 286(13):11067–11081

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bhaskaracharya A et al (2014) Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism. PLoS ONE 9(3), e93058

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nagata K et al (2009) Antidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief. Mol Pain 5:20

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hempel C et al (2013) The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology 75:365–379

    Article  CAS  PubMed  Google Scholar 

  30. Kenis G, Maes M (2002) Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol 5(4):401–412

    Article  CAS  PubMed  Google Scholar 

  31. Donnelly-Roberts DL et al (2009) Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 157(7):1203–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bradley HJ et al (2011) Pharmacological properties of the rhesus macaque monkey P2X7 receptor. Br J Pharmacol 164(2b):743–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Michel AD et al (2008) Identification of regions of the P2X(7) receptor that contribute to human and rat species differences in antagonist effects. Br J Pharmacol 155(5):738–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Michel AD et al (2009) Mechanism of action of species-selective P2X(7) receptor antagonists. Br J Pharmacol 156(8):1312–1325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Toulme E et al. (2010) On the role of ATP-gated P2X receptors in acute, inflammatory and neuropathic pain. In: Kruger L, Light AR (Eds) Translational pain research: from mouse to man. Boca Raton, FL

  36. Tsuda M et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424(6950):778–783

    Article  CAS  PubMed  Google Scholar 

  37. Ulmann L, Hirbec H, Rassendren F (2010) P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29(14):2290–2300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bourin M, Chue P, Guillon Y (2001) Paroxetine: a review. CNS Drug Rev 7(1):25–47

    Article  CAS  PubMed  Google Scholar 

  39. Arias HR et al (2010) Interaction of selective serotonin reuptake inhibitors with neuronal nicotinic acetylcholine receptors. Biochemistry 49(27):5734–5742

    Article  CAS  PubMed  Google Scholar 

  40. Eisensamer B et al (2003) Antidepressants are functional antagonists at the serotonin type 3 (5-HT3) receptor. Mol Psychiatry 8(12):994–1007

    Article  CAS  PubMed  Google Scholar 

  41. Dick IE et al (2007) Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain 8(4):315–324

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi T, Washiyama K, Ikeda K (2006) Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine. J Pharmacol Sci 102(3):278–287

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi T, Washiyama K, Ikeda K (2010) Inhibition of G-protein-activated inwardly rectifying K+ channels by the selective norepinephrine reuptake inhibitors atomoxetine and reboxetine. Neuropsychopharmacology 35(7):1560–1569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jo SH et al (2008) Clomipramine block of the hERG K+ channel: accessibility to F656 and Y652. Eur J Pharmacol 592(1–3):19–25

    Article  CAS  PubMed  Google Scholar 

  45. Robinson RT, Drafts BC, Fisher JL (2003) Fluoxetine increases GABA(A) receptor activity through a novel modulatory site. J Pharmacol Exp Ther 304(3):978–984

    Article  CAS  PubMed  Google Scholar 

  46. Michel AD, Chambers LJ, Walter DS (2008) Negative and positive allosteric modulators of the P2X(7) receptor. Br J Pharmacol 153(4):737–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Stokes L et al (2006) Characterization of a selective and potent antagonist of human P2X(7) receptors, AZ11645373. Br J Pharmacol 149(7):880–887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Toulme E et al (2010) P2X4 receptors in activated C8-B4 cells of cerebellar microglial origin. J Gen Physiol 135(4):333–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Mahmoodi M et al (2009) Effect of trifluoperazine on carrageenan-induced acute inflammation in intact and adrenalectomized rats. Int J Physiol Pathophysiol Pharmacol 1(2):150–153

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Luo F et al (2008) Reversal of chronic inflammatory pain by acute inhibition of Ca2+/calmodulin-dependent protein kinase II. J Pharmacol Exp Ther 325(1):267–275

    Article  CAS  PubMed  Google Scholar 

  51. Zarei M, Sabetkasaei M, Moini Zanjani T (2014) Paroxetine attenuates the development and existing pain in a rat model of neurophatic pain. Iran Biomed J 18(2):94–100

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Ronald Sluyter (University of Wollongong) and Dr Suzanne Rogers (RMIT University, Melbourne) for helpful discussions and Ms Griselda Loza-Diaz (Sydney Medical School Nepean, University of Sydney) for assistance with venipuncture. This work was supported by the National Health and Medical Research Council, Australia (Grant ID 632687 to LS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leanne Stokes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao-Ung, P., Skarratt, K.K., Fuller, S.J. et al. Paroxetine suppresses recombinant human P2X7 responses. Purinergic Signalling 11, 481–490 (2015). https://doi.org/10.1007/s11302-015-9467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9467-2

Keywords

Navigation