Skip to main content
Log in

Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A1 receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4–6 weeks old) and symptomatic (12–14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg2+ paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N 6-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Swinnen B, Robberecht W (2014) The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10(11):661–670. doi:10.1038/nrneurol.2014.184

    Article  PubMed  Google Scholar 

  2. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364(6435):362. doi:10.1038/364362c0

    CAS  PubMed  Google Scholar 

  3. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775. doi:10.1126/science.8209258

    Article  CAS  PubMed  Google Scholar 

  4. Correia-de-Sá P, Sebastião AM, Ribeiro JA (1991) Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve ending of the rat. Br J Pharmacol 103(2):1614–1620. doi:10.1111/j.1476-5381.1991.tb09836.x

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rocha MC, Pousinha PA, Correia AM, Sebastião AM, Ribeiro JA (2013) Early changes of neuromuscular transmission in the SOD1(G93A) mice model of ALS start long before motor symptoms onset. PLoS One 8(9), e73846. doi:10.1371/journal.pone.0073846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nascimento F, Pousinha PA, Correia AM, Gomes R, Sebastião AM, Ribeiro JA (2014) Adenosine A2A receptors activation facilitates neuromuscular transmission in the pre-symptomatic phase of the SOD1(G93A) ALS mice, but not in the symptomatic phase. PLoS One 9(8), e104081. doi:10.1371/journal.pone.0104081

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sebastião AM, Ribeiro JA (2009) Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. Br J Pharmacol 158(1):15–22. doi:10.1111/j.1476-5381.2009.00157.x

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ferre S, Ciruela F, Quiroz C, Lujan R, Popoli P, Cunha RA, Agnati LF, Fuxe K, Woods AS, Lluis C, Franco R (2007) Adenosine receptor heteromers and their integrative role in striatal function. Sci World J 7:74–85. doi:10.1100/tsw.2007.211

    Article  Google Scholar 

  9. Cunha RA, Johansson B, van der Ploeg I, Sebastião AM, Ribeiro JA, Fredholm BB (1994) Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res 649(1–2):208–216. doi:10.1016/0006-8993(94)91066-9

    Article  CAS  PubMed  Google Scholar 

  10. Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15(2):2024–2052. doi:10.3390/ijms15022024

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pousinha PA, Correia AM, Sebastião AM, Ribeiro JA (2010) Predominance of adenosine excitatory over inhibitory effects on transmission at the neuromuscular junction of infant rats. J Pharmacol Exp Ther 332(1):153–163. doi:10.1124/jpet.109.157255, jpet.109.157255 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro JA, Sebastião AM (1987) On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol 384:571–585. doi:10.1113/jphysiol.1987.sp016470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ribeiro JA, Walker J (1975) The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br J Pharmacol 54(2):213–218. doi:10.1111/j.1476-5381.1975.tb06931.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Krebs HA, Henseleit K (1932) Untersuchungen uber die Harnstoffbildung im Tierkoper. Hoppe-Seyler’s Z Physiol Chem 210:33–37. doi:10.1515/bchm2.1930.192.1-3.25

    Article  CAS  Google Scholar 

  15. Correia-de-Sá P, Timoteo MA, Ribeiro JA (1996) Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J Neurophysiol 76(6):3910–3919

    PubMed  Google Scholar 

  16. Lopes LV, Cunha RA, Ribeiro JA (1999) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82(6):3196–3203

    CAS  PubMed  Google Scholar 

  17. Pousinha PA, Correia AM, Sebastião AM, Ribeiro JA (2012) Neuromuscular transmission modulation by adenosine upon aging. Neurobiol Aging 33(12):2869–2880. doi:10.1016/j.neurobiolaging.2012.01.008, S0197-4580(12)00024-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Cristovao-Ferreira S, Navarro G, Brugarolas M, Perez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casado V, Franco R, Sebastião AM (2013) A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA transport into astrocytes. Purinergic Signalling 9(3):433–449. doi:10.1007/s11302-013-9364-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortes A, Canela EI, Lopez-Gimenez JF, Milligan G, Lluis C, Cunha RA, Ferre S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26(7):2080–2087. doi:10.1523/JNEUROSCI.3574-05.2006

    Article  CAS  PubMed  Google Scholar 

  20. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 112(2):319–329. doi:10.1016/S0306-4522(02)00080-5

    Article  CAS  PubMed  Google Scholar 

  21. Palma AG, Muchnik S, Losavio AS (2011) Excitatory effect of the A2A adenosine receptor agonist CGS-21680 on spontaneous and K +-evoked acetylcholine release at the mouse neuromuscular junction. Neuroscience 172:164–176. doi:10.1016/j.neuroscience.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  22. De Lorenzo S, Veggetti M, Muchnik S, Losavio A (2004) Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction. Br J Pharmacol 142(1):113–124. doi:10.1038/sj.bjp.0705656

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fuchs A, Kutterer S, Muhling T, Duda J, Schutz B, Liss B, Keller BU, Roeper J (2013) Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 591(Pt 10):2723–2745. doi:10.1113/jphysiol.2012.247981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ng SK, Higashimori H, Tolman M, Yang Y (2015) Suppression of adenosine 2a receptor (AR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 267:115–122. doi:10.1016/j.expneurol.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  25. Sebastião AM, Ribeiro JA (2009) Adenosine receptors and the central nervous system. Handb Exp Pharmacol 193:471–534. doi:10.1007/978-3-540-89615-9_16

    Article  PubMed  Google Scholar 

  26. Coughlan KS, Mitchem MR, Hogg MC, Prehn JH (2014) “Preconditioning” with latrepirdine, an adenosine 5′-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1 mice. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2014.09.022

    PubMed  Google Scholar 

  27. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887. doi:10.1074/jbc.271.44.27879

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro JA, Cunha RA, Correia-de-Sá P, Sebastião AM (1996) Purinergic regulation of acetylcholine release. Prog Brain Res 109:231–241. doi:10.1016/S0079-6123(08)62107-X

    Article  CAS  PubMed  Google Scholar 

  29. Vincenzi F, Corciulo C, Targa M, Casetta I, Gentile M, Granieri E, Borea PA, Popoli P, Varani K (2013) A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. Amyotrophic Lateral Sclerosis Frontotemporal Degeneration 14(5–6):406–413. doi:10.3109/21678421.2013.793358

    Article  CAS  PubMed  Google Scholar 

  30. Potenza RL, Armida M, Ferrante A, Pezzola A, Matteucci A, Puopolo M, Popoli P (2013) Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 91(4):585–592. doi:10.1002/jnr.23185

    Article  CAS  PubMed  Google Scholar 

  31. Yanpallewar SU, Barrick CA, Buckley H, Becker J, Tessarollo L (2012) Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS One 7(6), e39946. doi:10.1371/journal.pone.0039946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Correia-de-Sá P, Timoteo MA, Ribeiro JA (2000) A(2A) adenosine receptor facilitation of neuromuscular transmission: influence of stimulus paradigm on calcium mobilization. J Neurochem 74(6):2462–2469. doi:10.1046/j.1471-4159.2000.0742462.x

    Article  PubMed  Google Scholar 

  33. Tsentsevitsky A, Kovyazina I, Nikolsky E, Bukharaeva E, Giniatullin R (2013) Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 248:699–707. doi:10.1016/j.neuroscience.2013.05.065

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by FCT, PTDC/SAU-FAR/118787/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim A. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, F., Sebastião, A.M. & Ribeiro, J.A. Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission. Purinergic Signalling 11, 471–480 (2015). https://doi.org/10.1007/s11302-015-9465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9465-4

Keywords

Navigation